Androgen and Estrogen Receptor Expression in Carcinoma Urinary Bladder and Relationship with Clinicopathologic Features

Thesis Submitted to

All India Institute of Medical Sciences, Jodhpur

In partial fulfillment of the requirement for the degree of

Master of Chirurgiae (MCh)

Urology

JUNE 2022

Dr. NIKITA SHRIVASTAVA

AIIMS Jodhpur

All India Institute of Medical Sciences, Jodhpur

DECLARATION

I hereby declare that this thesis titled "Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features" is a bonafide and original research work carried out in partial fulfilment of the requirements for the degree of Master of Chirurgiae (M.Ch.) in Urology under supervision and guidance, in the Department of Urology, All India Institute of Medical Sciences, Jodhpur.

I further state that no part of the thesis has been submitted either in part or in full for any other degree of All India Institute of Medical Sciences or any other institute/university.

Ash

DR NIKITA SHRIVASTAVA

Department of Urology All India Institute of Medical Sciences, Jodhpur

All India Institute of Medical Sciences, Jodhpur

CERTIFICATE

This is to certify that the thesis titled "Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features" is the bonafide work of Dr Nikita Shrivastava carried out under our guidance and supervision, in the Department of Urology, All India Institute of Medical Sciences, Jodhpur.

GUIDE:

DR GAUTAM RAM CHOUDHARY

Associate Professor Department of Urology AIIMS, Jodhpur

Co-guides:

Dr Mahendra Singh Assistant Professor Department of Urology

Dr Arvind Sinha Professor and Head Department Of Pediatric Surgery

Prof (Dr.) Poonam Elhence Head of department Department of Pathology

Vilarb.

Dr. Vikarn Vishwajeet, Assistant Professor Department of Pathology

All India Institute of Medical Sciences, Jodhpur

CERTIFICATE

This is to certify that the thesis titled "Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features" is the bonafide work of Dr Nikita Shrivastava carried out under our guidance and supervision, in the Department of Urology, All India Institute of Medical Sciences, Jodhpur.

It is further certified that the candidate has fulfilled the pre-requisites necessary for the submission of this thesis work.

Dr ARJUN SINGH SANDHU

Professor and Head

Department of Urology

AIIMS, Jodhpur

ACKNOWLEDGEMENT

On the occasion of completion of my thesis, I would like to take this opportunity to express my heartfelt gratitude to all those, without whom this would have been impossible. First and foremost, I would like to thank my supervisor, Dr. Gautam Ram Choudhary, Associate Professor, Department of Urology, without whose valuable guidance and vigilant supervision, this thesis could never have been completed. I would like to thank him for being a constant source of inspiration. I offer my deep sense of gratitude to all the teachers who have given me enough opportunities to learn from their knowledge and expertise in the neverending field of Urology. Prof (Dr.) A.S. Sandhu, HOD, Department of Urology, Dr Mahendra Singh, Assistant Professor, Department of Urology, Dr Rahul Jena, Assistant Professor, Department of Urology, Dr Deepak Bhirud, Assistant Professor, Department of Urology, thank you for providing me their precious time, support and knowledge which was crucial for this study to complete successfully. I am also indebted to my co-supervisors, Prof (Dr.) Poonam Elhence, HOD, Department of Pathology, Dr. Vikarn Vishwajeet, Assistant Professor, Department of Pathology, and Dr Arvind Sinha, Prof and HOD, Department of pediatric surgery, for providing the necessary resources and guidance for my thesis. I would also like to take this opportunity to thank Dr Tushar Mittal, Senior resident, Department of Pathology, and Ms. Ankita, Lab assistant, Department of Pathology, for providing the necessary infrastructure, support and guidance all the way through the progression of research work.

I would like to thank my seniors Dr Aaron Jain, Dr Pritesh Jain, Dr Likhiteswer Pallagani and Dr Prateek Gupta, for their readily-approachable nature which has helped me in shaping my surgical skills and completing my dissertation. I would also like to thank my juniors Dr Amit Agarwal, Dr Shakti Swarup Sarangi , Dr Shashank Tripathi, Dr Priyank Bhargav and Dr Vikram Singh for their help and support. A special thanks to Mr Teekam Dadhich and Mr Sagar Kalwani for taking care of necessary paperwork for smooth completion of thesis work.

I dedicate my work to my parents Mr Arunesh Kant Shrivastava and Mrs Jyoti Shrivastava, my better half Dr. Sourabh Shrivastava, my in laws Mr Ravishankar Shrivastava and Dr. Meena Shrivastava, my sister Ms Aakriti Shrivastava and my brother and sister in law Dr Mayank Shrivastava and Mrs. Madhur Mohini Shrivastava, who have always provided me with emotional strength in all my fears and failures and have constantly pushed me to walk boldly towards success.

Above everything, I extend my earnest gratitude to all patients who have participated in this study, for their cooperation and trust in the treatment protocol of our department, which has helped immensely in wrapping up this study successfully. I humbly thank God for his blessings and bow down in hope of continued grace in this endeavor of becoming a compassionate doctor.

PARTICULARS	PAGE No.
List of Abbreviations	i-ii
List of Figures	Iii
List of Tables	iv-vii
List of Annexures	viii
Summary	1-2
Introduction	3
Review of Literature	4-22
Aims and Objectives	23
Materials and Methods	24-31
Results	32-63
Discussion	64-67
Conclusion	68
Bibliography	69-75
Annexures	76-76

INDEX

LIST OF ABBREVIATIONS

- AR- androgen receptor
- ER alpha- estrogen receptor alpha
- ER beta- estrogen receptor beta
- GLOBOCAN- Global Cancer Observatory
- Ca- Carcinoma
- NAT2- N-acetyltransferase 2
- GSTM1-Glutathione S-Transferase
- HNPCC- Hereditary Non-Polyposis Colon Carcinoma
- EBRT- External Beam Radiotherapy
- RR- Relative Risk
- CT- Computed Tomography
- AJCC- American Joint Committee on Cancer
- TNM- Tumor, Nodes, and Metastases
- WHO- World Health Organization
- AUA- American Urological Association
- NMIBC- Non Muscle Invasive Bladder Carcinoma
- NCCN- National Comprehensive Cancer Network
- TURBT- Transurethral Resection of the Bladder Tumor
- BCG- Bacillus Calmette Guérin
- GC- Gemcitabine plus Cisplatin

- MVAC- Methotrexate, Vinblastine, Doxorubicin and Cisplatin
- FDA- Food and Drug Administration
- MRI- Magnetic Resonance Imaging
- CPI- Immune Checkpoint Inhibitors
- PD-L1- Programmed Cell Death Ligand-1
- FGFR- Fibroblast growth factor receptor
- LBD- Ligand Binding Domain
- NTD- N-terminal Domain
- HSPs- Heat Shock Proteins
- DHT- Dihydrotestosterone
- AREs- Androgen Response Elements
- GnRH- Gonadotropin Releasing Hormone
- mRNA- messenger ribonucleic acid
- IHC- Immunohistochemistry

LIST OF FIGURES

S. No.	TITLE	PAGE No.
1	Potential pathways during urothelial tumorigenesis	14
2	Genomic androgen receptor pathway	14
3	The role of estrogen in development and expression of bladder cancer	22
4	Low power microphotograph of low grade papillary urothelial carcinoma. [Hematoxylin &eosin, 100x]	28
5	High power magnification shows maintained polarity of the urothelial cells and presence of umbrella cell layer on the surface. [Hematoxylin &eosin, 200x]	28
6	High grade urothelial carcinoma arranged in irregular islands and nests. Also note lamina propria invasion. [Hematoxylin &eosin, 100x]	29
7	Moderate to marked nuclear atypia of tumor cells with frequent mitotic figures [Hematoxylin &eosin, 200x]	29
8	Strong nuclear expression for Androgen receptor in tumor cells [Immunohistochemistry, 200X]	30
9	Moderate to strong Nuclear expression for Estrogen receptor beta in tumor cells [Immunohistochemistry, 200X]	30
10 A	Strong nuclear expression for ERalpha in low-grade papillary urothelial carcinoma	31
10 B	Strong nuclear expression for ERalpha in high-grade urothelial carcinoma.	31

LIST OF TABLES

S. No.	TITLE	PAGE No.
1	Tumor, nodes, and metastases (TNM) staging of bladder cancer	6
2	2004/2016 World Health Organization (WHO) classification of urothelial malignancies	8
3	AUA risk stratification for non muscle-invasive bladder carcinoma(NMIBC)	11
4	Recommendations for treatment of high-grade NMIBC	12
5	Summary of prior studies investigating the prevalence and significance of AR expression in urothelial carcinoma.	17-19
6	Antibodies used in the study with their clones and concentration	25
7	Distribution of age(years) of patients	32
8	Distribution of gender of patients	33
9	Distribution of histologic stage and grade of tumors.	33
10	Distribution of pathological variants of tumors in patients.	34
11	Distribution of size (in cm) of tumors.	34

12	Distribution of focality of bladder malignancy in patients.	35
13	Distribution of metastasis at presentation of patients	35
14	Distribution of surgery done on patients	35
15	Distribution of complications in patients undergoing TURBT/TUR Biopsy.	36
16	Distribution of complications in patients undergoing radical/palliative cystectomy	36
17	Distribution of complications in patients undergoing TURBT/TUR Biopsy as per Clavein Dindo classification.	37
18	Distribution of complications in patients undergoing radical/palliative cystectomy as per Clavein Dindo classification.	37
19	Distribution of length of hospital stay post surgery of patients	38
20	Distribution of ER alpha in tumor cells in patients	38
21	Distribution of ER beta in tumor cells of patients	38
22	Distribution of AR in tumor cells of patients	39
23	Association of age (years) with ER alpha	39
24	Association of age (years) with ER beta	40

25	Association of age (years) with AR	41
26	Association of gender with ER alpha	41
27	Association of gender with ER beta	42
28	Association of gender with AR	.42
29	Association of histologic stage and grade with ER alpha	43
30	Association of histologic stage and grade with ER beta	44
31	Association of histologic stage and grade with AR	45
32	Association of pathological type with ER alpha	46
33	Association of pathological type with ER beta	47
34	Association of pathological type with AR	48
35	Association of size (cm) with ER alpha.	49
36	Association of size(cm) with ER beta	49
37	Association of size(cm) with AR	50
38	Association of multifocality with ER alpha	50
39	Association of multifocality with ER beta	51

40	Association of multifocality with AR	51
41	Association of metastasis at presentation with ER alpha.	52
42	Association of metastasis at presentation with ER beta.	52
43	Association of metastasis at presentation with AR	53
44	Association of complications with ER alpha	54
45	Association of complications with ER beta	55
46	Association of complications with AR	56
47	Association of length of hospital stay post surgery with ER alpha	57
48	Association of length of hospital stay post surgery with ER beta	58
49	Association of length of hospital stay post surgery with AR	59
50	Association of complications with surgery done	59
51	Association of ER alpha with ER beta	62
52	Association of ER alpha with AR	62
53	Association of ER beta with AR	63

S. No.	ANNEXURES	PAGE No.
Ι	Institutional Ethical Clearance Certificate	76
II A	Informed consent (English)	77
II B	Informed consent (Hindi)	78
III A	Patient information sheet (English)	79-80
III B	Patient information sheet (Hindi)	81-83
IV	Proforma	84-85
V	Master Chart	86

LIST OF ANNEXURES

SUMMARY

<u>STUDY DESIGN</u>: Ambispective Hospital based Cross-sectional Study

<u>**OBJECTIVE**</u>: To examine expression of androgen receptors and estrogen receptors in patients with urinary bladder carcinoma.

BACKGROUND: Urinary bladder cancer stands eighth amongst causes of cancer related deaths. The advent of immunotherapy for urothelial carcinoma a few years back has been a boon for treatment of metastatic urothelial carcinoma. Unfortunately a small fraction of patients respond to currently available immunotherapeutic agents, and this paves way for assessing androgen and estrogen receptor targeting therapies for effectiveness. For this reason, a precise knowledge of the effect of androgen and estrogen receptors on clinicopathologic characteristics of bladder tumors is needed. Our study is to study the same in the Indian population.

METHODS: A total of 132 patients were included in the study. 116(87.88%) patients were males and 16(12.12%) patients were females. Most of the patients i.e. 42(31.82%) belonged to the age group of 61-70 years. The Histologic stage and grade of 31.82% patients was T1G3 followed by T2 in 29.55%. Only 5 out of 132 patients (3.79%) showed ER alpha positivity, 51.52% of patients had ER beta positivity and AR positivity was seen in 63.64% of patients. Distribution of ER alpha, ER beta and AR positivity was comparable in all age groups and their correlation was not statistically significant. No statistically significant correlation was found between ER alpha positive status and tumor stage and grade in our study.(p value=0.719). The expression of ER beta was more in small sized unifocal tumors.ER alpha expression was found between pathologic variant, complications, length of hospital stay and ER alpha, ER beta and AR receptor positivity in patients.

<u>CONCLUSION</u>: Our study is the one with the largest sample size conducted on the Indian population, and it revealed results which differ in various aspects from other similar studies of the past. Though AR and ER beta expression is high in bladder tumors and ER alpha expression is positive in a low percentage of patients which is similar to various other studies,

no correlation has been found between their expression and tumor stage and grade. The expression of ER beta was more in small sized unifocal tumors. ER alpha expression was found to be higher in metastatic tumors

INTRODUCTION

Urinary bladder cancer is the fourth most common cancer in males and eleventh most common in females, out of which nearly 95% have transitional cell carcinoma or urothelial carcinoma histology(1). Globally the male to female ratio is 3.5:1, while in India, it is as alarmingly high as 8.6:1(2). The advent of immunotherapy for urothelial carcinoma a few years back has been a boon for the treatment of metastatic urothelial carcinoma, after a long gap of no approval of new drugs for it for four decades(3). Unfortunately, a small fraction of patients respond to currently available immunotherapeutic agents, and this paves the way for the requirement of more effective targeted therapy.

Emerging preclinical evidence suggests the involvement of sex hormones and their receptor signals in the development and progression of bladder cancer. Meanwhile, previous studies have demonstrated conflicting results on the relationship between the status of sex hormone receptors- including androgen and estrogen receptors in urothelial tumors and histopathological characteristics of the tumors or patient outcomes(3). The role of androgen receptor (AR) signaling in the oncogenesis of prostate cancer is well established, but its role in other human malignancies including bladder cancer is poorly understood. AR receptors have also been proposed to have a role in gender disparity in the presentation of urinary bladder cancer.

Our study is to assess the clinicopathological impact of the expression of androgen receptors (AR) and estrogen receptors(ER) in bladder cancer in a tertiary care center in Rajasthan, India.

REVIEW OF LITERATURE

Urinary bladder cancer stands eighth amongst causes of cancer related deaths in males and are 3-4 times more likely to affect males than females (1). But females present with more advanced disease with poorer prognosis (2). The average age of diagnosis is 73, but it can be seen at any age. According to GLOBOCAN 2020, in India, the incidence rate of urinary bladder cancer is 1.6 % and prevalence is 3.57 per 1,00,000 population (3)

Risk factors

• Smoking/Tobacco

It is the most well-known etiological agent and increases risk by 2-3 fold(4) Aromatic amines are the primary carcinogens in tobacco smoke that lead to cancer.(4) In those patients who stopped smoking, there was a significant reduction in the risk of CA bladder. This reduction was around 40% within one to four years of cessation and 60% after 25 years.(5)

• Occupational exposure to chemicals

It is the second most important risk factor for CA bladder accounting for 20–25% of all cases and is likely to occur in occupations in which dyes, rubbers, textiles, paints, leathers, and chemicals are used (5). The risk due to occupational exposure to carcinogenic aromatic amines is greater after ten years or more of exposure.(5)

• Genetics

The most-studied genes associated with bladder cancer are N-acetyltransferase 2 (NAT2) and a deletion of glutathione S-transferase (GSTM1).(4) Both of them metabolize aromatic amines and in case of environmental carcinogen exposure have a significant role. NAT2 detoxifies nitrosamines, regulating the rate of acetylation of aromatic amine compounds found in cigarette smoke. There are several underlying genetic risk factors, which when combined with behavioral, occupational, and environmental exposures, potentiate bladder cancer risk and development.(4)

• Hereditary

Hereditary bladder cancer is comparatively rare. The incidence increases 2 fold in relatives of patients with malignancies of bladder. Patients with Lynch syndrome (hereditary non-polyposis colon carcinoma, HNPCC) are at high risk of developing urothelial cancer.

• Metabolic disorders

Obesity is a risk factor for bladder cancer. The mechanism by which obesity leads to cancer risk includes insulin resistance, chronic hyperinsulinemia, increased bioavailability of steroid hormones, and localized inflammation. However, the exact mechanism is unknown.(4) Elevated blood pressure and triglycerides are also postulated to be associated with increased risk.(5)

Radiotherapy

Increased rates of secondary bladder malignancies have been reported after external-beam radiotherapy (EBRT) for gynaecological malignancies, with relative risks (RR) of 2-4 (6).

• Bladder schistosomiasis and chronic urinary tract infection

Schistosomiasis has been proven to be associated with squamous cell carcinoma of the bladder.(4,5)

Presentation

- Painless gross hematuria Approximately 80-90% of patients; classic presentation
- Irritative bladder symptoms (eg, dysuria, urgency, frequency of urination) 20-30% of patients
- Pelvic or bony pain, lower-extremity edema, or flank pain In patients with advanced disease

Diagnosis

- Upper urinary tract imaging- ultrasonography and CT urography
- Urine studies:
- 1. Urinalysis with microscopy
- 2. Urine culture to rule out infection, if suspected
- 3. Urinary tumor marker testing
- 4. Urinary cytology
- Bone imaging- only when there is clinical suspicion or symptoms of bone metastases
- Cystoscopy:

The gold-standard test for the diagnosis of bladder cancer is cystoscopy and biopsy. All adult patients who present with gross hematuria and those who are older than 35 years and have microscopic hematuria should undergo cystoscopy.

Staging

The American Joint Committee on Cancer (AJCC) in combination with the International Union Cancer Consortium meets regularly to determine tumor, nodes, and metastases (TNM) staging classification in 2017 which is as follows (**Table 1**):

T - Primary Tumour	
Тх	Primary tumour cannot be assessed
TO	no evidence of a primary tumor
Та	Non-invasive papillary carcinoma
Tis	Carcinoma in situ: "flat tumour"
T1	Tumour invades subepithelial connective tissue
T2	Tumour invades muscle
	T2a Tumour invades superficial muscle (inner half)
	T2b Tumour invades deep muscle (outer half)
T3	Tumour invades perivesical tissue:
	T3a microscopically
	T3b macroscopically (extravesical mass)
T4	Tumour invades any of the following: prostate stroma, seminal vesicles, uterus,
	vagina, pelvic wall, abdominal wall
	T4a Tumour invades prostate stroma, seminal vesicles, uterus, or vagina
	T4b Tumour invades pelvic wall or abdominal wall

N - Reg	N - Regional Lymph Nodes	
Nx	Regional lymph nodes cannot be assessed	
NO	No regional lymph node metastasis	
N1	Metastasis in a single lymph node in the true pelvis (hypogastric, obturator, external iliac, or presacral)	
N2	Metastasis in multiple regional lymph nodes in the true pelvis (hypogastric,	

	obturator, external iliac, or presacral)
N3	Metastasis in a common iliac lymph node(s)

M - Distant Metastasis	
M0	No distant metastasis
M1a	Non-regional lymph nodes
M1b	Other distant metastasis

Stage 0a	Ta N0 M0
Stage	Tis N0 M0
0is	
Stage I	T1 N0 M0
Stage II	T2a N0 M0
	T2b N0 M0
Stage III	T3a N0 M0
	T3b N0 M0
	T4a N0 M0
Stage IV	T4b N0 M0
	Any T N1-3 M0
	Any T Any N M1

Pathology.

Bladder cancer is broadly divided into three clinical types - non-muscle invasive, muscleinvasive, and metastatic. All three of them vary in clinical phenotype, biological behaviour, prognosis and management. Approximately 70% to 80% of bladder tumors are non-muscle invasive at presentation with 60% to 70% as Ta, 20% to 30% as T1, and approximately 10% as carcinoma in situ(4). In addition to these, bladder cancer demonstrates several variants of different histologies that bear significant impact on the prognosis and management of patients.(10)

Broadly dividing, Urothelial carcinoma comprises about 90% of cases, squamous cell carcinoma 3-7% and adenocarcinoma 0.5-2%. Normal urothelium comprises multilayered

mucosa, 4 to 7 cells thick, which features the transition between pseudostratified columnar and nonkeratinizing squamous epithelium. Cells mature from the basal basement membrane cells, which are small and cuboidal, to intermediate cells to superficial umbrella cells in an orderly manner. The surface is capped with large umbrella cells that are in the form of asymmetrical entities. These umbrella cells form a barrier between urine and bladder and prevent toxins from affecting urothelial cells. Malignant transformation is a continuum from cells turning hyperplastic, then progress to atypia, dysplasia and finally malignancy.(4)

e			
Urothelial carcinoma	Infiltrating urothelial carcinoma		
	Urothelial carcinoma with divergent		
	differentiation		
	With squamous differentiation		
	With glandular differentiation		
	With trophoblastic differentiation		
	Nested urothelial carcinoma (including large		
	nested variant)		
	Microcystic urothelial carcinoma		
	Micropapillary urothelial carcinoma		
	Lymphoepithelioma-like urothelial		
	carcinoma		
	Plasmacytoid / signet ring / diffuse urothelial		
	carcinoma		
	Sarcomatoid urothelial carcinoma		
	Giant cell urothelial carcinoma		
	Poorly differentiated urothelial carcinoma		
	Lipid rich urothelial carcinoma		
	Clear cell (glycogen rich) urothelial		
	carcinoma		
	Noninvasive urothelial lesions		
	Urothelial carcinoma in situ		

Based on the 2004/2016 World Health Organization (WHO) classification, currently the urothelial malignancies are classified into following subtypes (11,12)(**Table 2**)

	Noninvasive papillary urothelial carcinoma,		
	low grade Noninvasive papillary urothelial carcinoma,		
	high grade		
	Papillary urothelial neoplasm of low		
	malignant potential		
	Urothelial papilloma		
	Inverted urothelial papilloma		
	Urothelial proliferation of uncertain		
	malignant potential		
	Urothelial dysplasia		
Squamous cell neoplasms	Pure squamous cell carcinoma		
	Verrucous carcinoma		
	Squamous cell papilloma		
Glandular neoplasms	Adenocarcinoma, NOS		
	Enteric		
	Mucinous		
	Mixed		
	Villous adenoma		
Urachal carcinoma			
Tumors of Müllerian type	Clear cell carcinoma		
	Endometrioid carcinoma		
Neuroendocrine tumors	Small cell neuroendocrine carcinomaLarge cell neuroendocrine carcinomaWell differentiated neuroendocrine tumor		
	Paraganglioma		
Melanocytic tumors	Malignant melanoma		

	Nevus
	Melanosis
	Rhabdomyosarcoma
Mesenchymal tumors	Leiomyosarcoma
	Angiosarcoma
	Inflammatory myofibroblastic tumor
	Perivascular epithelioid cell tumor
	Benign
	Malignant
	Solitary fibrous tumor
	Leiomyoma
	Hemangioma
	Granular cell tumor
	Neurofibroma
Urothelial tract hematopoietic and lymphoid	
tumors	
Miscellaneous tumors	Carcinoma of Skene, Cowper and Littre
	glands
	Metastatic tumors and tumors extending from
	other organs
	Epithelial tumors of the upper urinary tract
	Tumors arising in a bladder diverticulum
	Urothelial tumors of the urethra

Treatment

Non-muscle-invasive bladder carcinoma

• Table 3:AUA risk stratification for NMIBC(9)

Low risk	Intermediate risk	High risk	
Papillary urothelial neoplasm	low grade urothelial	High grade urothelial	
of low malignant potential	carcinoma	carcinoma	
Low grade urothelial	T1 or	CIS or	
carcinoma	>3cm or	T1 or	
Та	Multifocal or	>3cm or	
<=3cm Recurrence within 1 year		Multifocal	
solitary			
	High grade urothelial	Very high risk features(any):	
	carcinoma	BCG unresponsive	
	Ta and	Variant histologies	
	<=3cm and	Lymphovascular invasion	
	solitary	Prostatic urethra	
		invasion	

- National Comprehensive Cancer Network (NCCN) recommendations for NMIBC are as follows (9):
- Standard treatment for non-muscle invasive bladder cancer (NMIBC) is a complete transurethral resection of the bladder tumor (TURBT)
- a restage TURBT is recommended 2-6 weeks after the initial resection in any of the following situations (4,5):
- 1) After incomplete initial TURBT
- 2) If there is no muscle in the specimen after initial resection, with exception of Ta lowgrade tumors
- 3) In all T1 tumors
- 4) In all high-grade tumors.
- Intravesical chemotherapy is generally used as prophylactic or adjuvant therapy after complete endoscopic resection. The agent of choice to be decided on the basis of AUA risk stratification:

Low risk- surveillance

Intermediate risk- intravesical mitomycin or gemcitabine(preferred) or surveillance

- One postoperative intravesical dose (within 24 h, but usually immediately after resection) has been shown to decrease recurrence, but not progression, in patients of low-risk NMIBC
- Immediate intravesical chemotherapy is avoided when TURBT was extensive or perforation is suspected or the tumor appears invasive or high grade
- Immediate intravesical chemotherapy can be succeeded by a induction of intravesical chemotherapy for 6 weeks(once per week)
- **Table 4**:recommendations for treatment of high-grade NMIBC:

Intravesical	bacillus	Very high risk features-	radical cystectomy(preferred)	
Calmette-Guérin	(BCG)		or BCG	
naïve-				
		No very high risk features-	BCG(preferred) or radical	
			cystectomy	
BCG unresponsi	ve or		radical cystectomy(preferred)	
intolerant			or valrubicin or	
			pembrolizumab	

Muscle-invasive bladder cancer (MIBC)

- NCCN recommendations for treatment of muscle-invasive disease are as follows (9):
- TURBT is the initial diagnostic procedure after CT/MRI imaging of the abdomen, pelvis, chest, to help identify the clinical stage of bladder cancer.
- Radical cystectomy is the primary treatment for all muscle-invasive disease, with strong consideration for cisplatin-based neoadjuvant chemotherapy (category 1 recommendation),
- Bladder preservation following TURBT with concurrent chemotherapy and radiation is an alternative therapy for patients with multiple medical comorbidities or who refuse radical cystectomy

Metastatic bladder cancer

In spite of initial therapeutic measures, about 50% of patients with muscle invasive bladder cancer may develop recurrence or metastases(30). The first line of therapy in suitable patients of metastatic bladder cancer continues to be platinum-based combination chemotherapy with gemcitabine plus cisplatin (GC) or methotrexate, vinblastine, doxorubicin and cisplatin (MVAC) (31,32). The advent of immune checkpoint inhibitors has significantly boosted the treatment of metastatic bladder cancer after a long gap of about 40 years. Food and Drug Administration (FDA) has approved five immune checkpoint inhibitors(CPI), namely programmed cell death ligand-1 (PD-L1) inhibitors (atezolizumab, avelumab, and durvalumab) and anti-PD-1 antibodies (pembrolizumab and nivolumab) for management of advanced and metastatic bladder malignancies .(33-38) Atezolizumab and pembrolizumab have been approved as first-line therapy in cisplatin-ineligible patients of metastatic bladder cancer with high expression of PD-L1.(39) Unfortunately, poor efficacy limits the use of CPIs, with significant response in just 20% of patients. In the present scenario there are very limited treatment options for bladder cancer patients who show no response or show progression on CPIs. Enfortumab vedotin, a novel antibody drug conjugate, has shown promising results in bladder cancer patients not responding to prior chemotherapy and immune checkpoint inhibitors(40). Fibroblast growth factor receptor (FGFR) inhibitor erdafitinib is another promising agent which acts on patients with genetic alterations of FGFR3 or FGFR2. It also shows good results in patients who showed progression on prior platinum based chemotherapy (41). But only around 10% metastatic bladder cancer patients harbor the susceptible genetic alterations, limiting its use. Giving the poor five-year survival rate of metastatic bladder cancer patients, there is a great need of development of novel targeted therapies in bladder cancer(16)

Targeted therapies for metastatic bladder cancer- the need of hour

Though the current histopathologic classification for bladder cancer has improved its management, dealing with progression and recurrence on existing therapeutic measures still remains in question. Adding to it, accurate prediction of response to specific therapies cannot be made. Bladder tumors show vast heterogeneity with respect to both clinical behavior and histopathology.(13)Many theories about tumorigenesis are suggestive of involvement of ditomonous genetic pathways in urinary bladder carcinoma. Patients with low grade malignancy have a better disease- specific survival, although they may have recurrence,

occasionally with progression in grade. In contrast, invasive high grade malignancies generally show poor prognosis, even when treated aggressively. Other than aggressiveness of tumor, gender disparity in incidence and nature has also been related to genetics. The sex steroid pathways have been postulated to play a predominant role in it.(21)

Figure 1: potential pathways during urothelial tumorigenesis(13)

Androgen receptors

Structure and function of androgen receptors(AR)

Figure 2:Genomic androgen receptor pathway.(42)

The androgen receptor is a member of the steroid hormone receptor family. It comprises 3 domains- a deoxyribonucleic acid (DNA) binding, ligand binding (LBD) and an N-terminal domain (NTD) (16). When its ligands are absent, the AR is bound to heat shock proteins (HSPs) in the cytoplasm. On binding to its ligands like dihydrotestosterone (DHT), it is translocated from cytoplasm to the nucleus, where it regulates the transcription of its target genes, which are also known as androgen response elements (AREs). In prostate cancer the role of AR in oncogenesis is well recognized, where the cornerstone of therapy is formed by AR targeting agents such as gonadotropin releasing hormone (GnRH) agonist/antagonists and AR antagonists such as enzalutamide(16). Other than prostate cancer, AR has been found to play a role in pathogenesis of other cancers also like triple-negative breast cancer and bladder cancer(16).

Physiologic functions of AR in bladder

The prostate, membranous urethra and urinary bladder are derived from the endoderm of urogenital sinus. AR expression in normal urothelium, smooth muscles, submucosa and neurons has been described in primate and human bladder, though urinary bladder is not traditionally considered to be an androgen responsive organ. (44). The role of AR in normal development of bladder remains incompletely understood. In preclinical models, androgen deprivation has been found to be associated with a significant decrease in total and smooth muscle mass of bladder, decrease in function of autonomic nerves and reduced capacity of bladder. Moreover these effects were reversible with testosterone supplementation (45). These studies show that there is a significant role of AR signaling in normal embryonic development and functioning of the urinary bladder.

Role of androgen receptors in bladder cancer

Traditionally bladder cancer has not been seen as an androgen driven malignancy. But there could be some link between bladder malignancy and androgens, as suggested by strong male preponderance of ca bladder (16). One of the reasons for the gender disparity has been explained by higher exposure to cigarette smoking and occupational exposure. But men continue to have three to four times increased risk of developing bladder cancer than women even when accounting for addictions, lifestyle and environmental factors. Women are generally found to present with more advanced malignancy and with poorer prognosis (16). This predilection can be explained by the differences in AR signaling in both the genders.

Miyamoto et al. (43) studied mice models and found that the oncogenic effects of carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) was dependent on AR signaling. The incidence of urothelial cancer was higher in AR wild type male mice treated with BBN in comparison to female mice in this study(92% vs. 42%, respectively). On the contrary, none of the AR knockout mice developed malignancy(43).

Androgen receptor expression in bladder cancer and correlation with clinicopathologic features

Expression of sex steroidal hormone by immunohistochemistry (IHC) is seen in tumor tissue in 11% to 55% of patients with bladder carcinoma.(14) The studies on AR expression in bladder carcinoma have shown contrasting results. Some studies have shown an increase in AR expression in tumor tissue compared to normal urothelial tissue (20), whereas others have reported its down regulation in cancerous cells(17-19). A meta-analysis comprising nine studies found AR expression to be similar in cancerous tissue in comparison to normal urothelium. The expression was also similar in muscle-invasive and non-muscle invasive tumors (21). Surprisingly, in comparison to low grade tumors, AR expression was found to be lower in high-grade tumors. On the other hand, Elzamy et al. (22) found that expression of AR was seen in 35% of patients with urothelial carcinoma and is related to high grade tumors and muscle invasiveness. Other Studies on relation of AR expression in urothelial carcinoma to prognosis have shown discordance in results. According to Nam et al. expression of AR is related to reduced risk of recurrence in patients with non muscle invasive carcinoma (23). On the contrary, no significant association was found between AR expression and outcomes in other similar studies (22). A recent study by Sikic et al. correlated AR mRNA expression in their institutional cohort of 41 patients of ca bladder and 323 patients of TCGA dataset (25). Although no correlation was found between gender and AR expression, a significantly worse disease-free survival and overall survival was found in females in whom expression of AR mRNA above median level was found, as compared to men in whom this was not observed. So their conclusion was that AR mRNA expression can be used in women as an independent prognostic marker for disease-free survival. Also, they analysed that expression of AR mRNA was higher in non muscle invasive than in muscle-invasive carcinoma (23). A study by Yasui et al. correlated recurrence of non muscle invasive disease and AR expression in Japanese population (26). It was a retrospective study where AR expression was correlated with recurrence-free survival in 53 patients with non muscle invasive disease. Although no

significant difference in recurrence-free survival was found between the groups expressing high AR and low AR, multivariate analysis showed tumor size <3 cm and female gender to be independent predictors of shorter recurrence-free survival (24). Such discrepancy in results could be due to differences in the assays used for assessing AR expression. It has also been postulated that the expression of AR might change during bladder cancer progression and AR expression might not be a true reflection of AR signaling(22). On the basis of this hypothesis, Bergerot et al. (14) assessed AR expression by IHC and quantitative polymerase chain reaction and gave an AR activity score which would reflect expression of AR responsive genes. Out of the 37 patients with muscle invasive cancer included in this study, AR expression was noticed in 54% of patients but no correlation was found with AR activity score(22). There is a single Indian study by Pachauri et al over the role of AR in carcinoma of urinary bladder which evaluated 20 cases of urothelial carcinoma and found that expression of AR signifies bad prognosis and targeting AR and androgen may provide novel chemopreventive and therapeutic approaches for the management of bladder cancer(28).

Study	sample size	method of assessment	key findings
Birtle et al., 2004	17	IHC	2þ/3þ AR expression in 52% of samples No expression in normal urothelium
Boorjian et al., 2004	49	IHC	53% of samples expressed AR Prevalence of AR expression decreased in: Tumor tissue (53%) vs. normal urothelium (86%) MIBC (21%) vs. NMIBC (75%) High grade (49%) vs. low grade (89%)
Ide et al., 2017	2049	meta-analysis	Similar AR expression in normal tissue vs. tumor tissue AR expression strongly correlated with: Gender (male vs. female) Tumor grade (low grade vs. high grade)
---------------------------	------	---------------	---
Kauffman et al., 2011	72	IHC	Decreased AR expression in: Tumor vs. normal tissue (51% vs. 84%) MIBC vs. NMIBC
Kashiwagi et al., 2016	99	IHC	Decreased AR expression in tumor (20%) vs. normal tissue (57%) No correlation with DSM
Elzamy et al., 2018	106	IHC	AR positivity in 35% AR expression more frequent in MIBC (41%) vs. NMIBC (19%) High grade (52%) vs. low grade (15%)

			No correlation of AR expression with RFS
Nam et al., 2014	169	IHC	AR expression seen in 37% of samples AR expression associated with improved RFS/PFS in NMIBC
Sikic et al., 2019	41(institutional cohort)	gene expression analysis	Significantly lower AR mRNA expression in MIBC vs. NMIBC Similar AR mRNA expression in males vs. females
	323(The Cancer Genome Atlas (TCGA) cohort)	gene expression analysis	ARmRNAexpression highest inluminal subtypeARexpressionassociated with worseDFS and OS

Table 5:Summary of prior studies investigating the prevalence and significance of ARexpression in urothelial carcinoma(16).

Targeting androgen receptors in bladder cancer- preliminary results

There have been few preclinical studies on the use of androgen deprivation therapy in management of bladder cancer(46,47,48). There is some preclinical evidence that shows resistance to cisplatin-based chemotherapy mediated by AR. The antitumor efficacy of combined treatment enzalutamide and cisplatin in ca bladder was studied by Tyagi et al. He found that these agents together synergistically inhibit tumor cell growth which is due to

increment in pro-apoptotic signaling and reduction in mesenchymal markers(49). Huang et al. also reported similar results in a study of androgen receptor (AR)-degradation enhancer ASC-J9 in muscle-invasive bladder cancer (miBCa) cells. He found that ASC-J9 and cisplatin, when given together, cause increase in expression of the cell cycle inhibitor p21 gene and pro-apoptotic BAX gene, and reduction in anti-apoptotic gene BCL-2. Due to this reason better results in tumor suppression were obtained than with cisplatin alone(50).

Though preclinical evidence has provided rationale for targeting AR with or without cisplatin in bladder cancer, clinical data which proves efficacy of AR inhibitors in bladder cancer is lacking. A phase 1 trial was carried out which studied the safety and efficacy of enzalutamide, cisplatin and gemcitabine together in patients of metastatic ca bladder(NCT02300610) (51). Patients of advanced ca bladder who had not received any previous treatment were enrolled to evaluate two doses of enzalutamide (80 mg and 160 mg daily) with six cycles of standard doses of cisplatin and gemcitabine. In total, 10 patients were enrolled including six in the dose escalation phase and four in the dose expansion part of the study. The maximum tolerated dose of enzalutamide was found to be 160 mg daily and no dose limiting toxicities were noted. The combination showed good efficacy with complete response in one female patient who had strongly positive AR expression, and partial response and stable disease in four and two patients respectively. This was the first study to demonstrate safety and efficacy of enzalutamide with cisplatin and gemcitabine in metastatic bladder cancer, and it's testing in larger trials is needed(51).

The variability in results from the above trials call for the need of systematic clinical studies to investigate the role of androgen receptors in bladder cancer. Also, the prognostic and predictive significance of AR in various stages of bladder carcinoma needs to be studied.(16)

Estrogen receptors

The physiological functions of estrogen compounds in the body are modulated primarily by the estrogen receptor subtypes alpha (ER α) and beta (ER β). These proteins mainly act on the cell nucleus, regulating transcription of specific target genes by binding to associated DNA regulatory sequences. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. ER α is predominant in mammary gland, uterus, ovary (thecal cells), bone, male reproductive organs (testes and epididymis), prostate (stroma), liver, and adipose tissue. ER β is found mainly in the prostate (epithelium), bladder, ovary (granulosa cells), colon, adipose tissue, and immune system.(60)

Role of estrogen receptors in bladder cancer

In certain tissues such as breast, estrogens and estrogen metabolites have been proven to act as carcinogens. Estrogen receptors have been found to induce DNA damage in various tissues.(52) In contrast, protective role of estrogens against bladder cancer initiation in N--butyl--N-[4--hydroxybutyl]--nitrosamine (BBN)-induced bladder cancer in rodent models have been shown by Okajima et al.and Tanahashi et al.(53,54). Studies showed greater risk of bladder cancer in postmenopausal women than premeno-pausal women(55). This was supported by the finding that women who attain menopause at a younger age have increased risk of bladder cancer.(56) The results of studies involving immunohistochemical staining of ER α and ER β in different stages and grades of bladder cancer have been inconsistent. Bolenz et al. worked on ERa immunohisto-chemical staining and found that ERa expres-sion was associated with lower tumour stage and ER α expression in bladder cancer patients who had lymph node metastases was absent. He concluded that ERa prevents lymph node metastasis in bladder cancer .(57) Croft et al. also showed similar results in metastatic bladder cancer and found all metastatic foci are negative of ER α expression in bladder cancer patients(58). Miyamoto et al. also found a lower expression of ERa in high grade tumours (23%) and tumours invading the muscularis propria (19%) than in low grade tumours (51%).(59) On the other hand, they found higher expression of ER β in high grade tumours (58%) and muscle invasive tumours (67%). Still there has not been a consistent agreement on the role of ER α in bladder cancer cell growth. Different studies show different results on the role of ER α in promoting or inhibiting cancer cell growth in the bladder. These discrepancies could be due to heterogeneous nature of tumours and differences in study design(52). The above mentioned data can facilitate development of new therapeutic agents that selectively enhance ERa expression, suppress ER β , or act upon the downstream target genes of these receptors.(52)

Figure 3: the role of estrogen in development and expression of bladder cancer (52)

To conclude, an inverse relationship has been found between expression of AR and advanced disease, which can also be explained by the biphasic nature of behavior of AR during the natural course of the bladder cancer. ER α expression has been found to be protective against the development of bladder cancer, whereas expression of ER β is greater in high-grade and muscle-invasive bladder cancer. In a country like India, more studies are needed where the etiology, biology, behavior, and treatment of bladder cancer varies vastly across the community(14). Our intention is to further study the role of AR and ER in carcinoma of urinary bladder in the Indian population presenting in our institute.

AIM AND OBJECTIVES

Primary objective:

To examine the expression of androgen receptors and estrogen receptors in patients with Ca urinary bladder.

Secondary objective:

- 1. To study the association of expression of AR and ER receptors with pathological stage and grade of tumor.
- 2. To establish their expression in different types of bladder carcinoma.
- 3. To study the correlation of various clinical parameters with androgen and estrogen receptor expression.

MATERIALS AND METHODS

PLACE OF STUDY: Department of Urology and Department of pathology, All India Institute of Medical Science, Jodhpur, Rajasthan, India.

TIME PERIOD- October 2020 to January 2022

STUDY DESIGN: Ambispective Hospital based Cross-sectional Study

PATIENT SELECTION:

INCLUSION CRITERIA:

Prospective cases: All patients diagnosed with urinary bladder mass and undergoing surgery for the same, either transurethral resection of bladder tumor (TURBT), TUR biopsy or radical cystectomy and diagnosed with urinary bladder neoplasm on histopathological examination (HPE)

Retrospective cases: archived paraffin embedded blocks of diagnosed cases of urinary bladder neoplasm on histopathological examination (HPE) from a time period of January 2019 to October 2020 were recruited.

EXCLUSION CRITERIA:

- 1. Non-neoplastic pathology on HPE
- 2. Patients not willing to participate in the study
- 3. Inadequate sampling

SAMPLE SIZE: The following equation was used for sample size calculation

$$N = \frac{\sigma_1 + \sigma_2 (Z_{1-\alpha} + Z_{1-\beta})^2}{(M_1 + M_2)^2}$$

Where $\sigma 1$ and $\sigma 2$ are standard deviations in group 1 and group 2, α is alpha error, β is beta error, M1 and M2 are mean from group 1 and 2 respectively, and Z is a constant.

Boorjian S et al 2004 found that 75% of superficial tumors expressed AR. Using this for sample size calculation and using the above formula, we estimated that <u>136</u> bladder cancer patients will be needed at 95% CI, 10% relative precision and 5% contingency.

METHODOLOGY

A clearance from the Ethical Committee of Institution was obtained prior to the investigation (Ethical clearance number AIIMS/IEC/2019-20/963).Samples were taken in an ambispective manner. For both prospective and retrospective cases, baseline assessment of the patients including the demographic characterization, medical history, physical examination and radiological findings as per ultrasound abdomen and pelvis, computed tomography (CT scan) or magnetic Resonance Imaging (MRI) was noted. Type of surgery performed and perioperative parameters were noted such as complications (if any), degree of haematuria post-surgery and length of hospital stay were noted. For retrospective cases this data was procured from medical record files and online database of AIIMS, Jodhpur. The previous diagnosed cases of urinary bladder neoplasms in the Department of Pathology from January 2019 to December 2021 were re-assessed and the corresponding blocks were taken out and submitted for IHC testing.

Histopathologic assessment methodology for all the samples:

Haematoxylin and eosin stained slides of prospective and retrospective cases were analyzed for the histologic type, grade and stage of the tumor, according to current WHO classification. For IHC testing, blocks were selected based on the adequate tumor tissue and were subjected to immunohistochemical staining for ER-alpha, ER-beta and AR.

Immunohistochemical Technique

The antibodies, used in this study, along with their clones and concentration are listed Table below:

IHC stain	Dilution	Manifacturing company	Clone	Buffer
ERα	1:100	Thermoscientific	SP1	Citrate
AR	1:100	Thermoscientific	Polyclonal	Citrate
ERβ	1:50	Medaysis	ERb455	Tris-EDTA

Table 6:- Antibodies used in the study with their clones and concentration

Appropriate positive controls were used in each IHC testing. Breast tissue was taken as control for ER α , prostate for AR and testis for ER β . For negative control, primary antibodies were omitted.

Procedure for Immunohistochemistry

Sections of 4µ thickness were cut from paraffin blocks and mounted on poly-l-lysine coated slides. They were dried overnight at 37° C. The slides were dewaxed in xylene and rehydrated in a series of graded alcohol. This was followed by 3 washes in Phosphate Buffer Saline (PBS) for 5 minutes each. Endogenous peroxidase activity was blocked by freshly prepared 0.3 % hydrogen peroxide in methanol for 20 minutes, followed by 3 washes in PBS. Antigen retrieval was done by pressure method Citrate buffer (pH 6.0) for ERa and AR while Tris-EDTA buffer for ER β . After cooling slides were removed from the instrument and dipped in distilled water (30 seconds) and transferred to PBS. This was followed by washing in PBS 3 times of 5 minutes each at room temperature. The primary antibody with appropriate dilution (Table abov e) was then applied to the sections and kept at room temperature for one and half hour to 2 hours in a moist chamber. This was followed by three washes with PBS for 5 minutes each and incubated with biotinylated secondary antibody for 30 minutes. After 3 washes with PBS for 5 minutes each the sections was covered with freshly prepared Di-amino benzidene, DAB solution for 3 minutes and rinsed with water. Counterstaining was done with haematoxylin for 5 minutes followed by one wash with Scotts tap water. Then the sections were dehydrated, washed with xylene and mounted with Dextreme Pthylate Xylene [DPX]. Appropriate control slides were used with each testing.

Evaluation

For each IHC stains, cases showing nuclear expression in more than 10% of tumor cells were considered positive for these immunohistochemical markers.

The patients included in the study were analyzed for distribution of ER alpha, ER beta and AR in their tumor tissues. Also, the expression of these three receptors was correlated separately with following parameters:

- Age
- Gender
- Histologic stage and grade
- Pathologic variant
- Size of tumor
- Multifocality of tumor
- Metastases at presentation
- Complications
- Length of hospital stay post surgery
- Association of ER alpha, ER beta and AR with each other

STATISTICAL ANALYSIS

The presentation of the Categorical variables was done in the form of number and percentage (%). On the other hand, the quantitative data were presented as the means \pm SD and as median with 25th and 75th percentiles (interquartile range). The data normality was checked by using Kolmogorov-Smirnov test. The cases in which the data was not normal, we used non parametric tests. The following statistical tests were applied for the results:

1. The association of the variables which were quantitative and not normally distributed in nature were analysed using Mann-Whitney Test and Independent t test was used for association of normally distributed data between two groups.

2. The association of the variables which were qualitative in nature were analysed using Chi-Square test. If any cell had an expected value of less than 5 then Fisher's exact test was used.

The data entry was done in the Microsoft EXCEL spreadsheet and the final analysis was done with the use of Statistical Package for Social Sciences (SPSS) software, IBM manufacturer, Chicago, USA, ver 21.0.

For statistical significance, p value of less than 0.05 was considered statistically significant.

Fig 4: Low power microphotograph of low grade papillary urothelial carcinoma. [Hematoxylin &eosin, 100x]

Fig 5: High power magnification shows maintained polarity of the urothelial cells and presence of umbrella cell layer on the surface. [Hematoxylin &eosin, 200x]

Fig 6: High grade urothelial carcinoma arranged in irregular islands and nests. Also note lamina propria invasion. [Hematoxylin &eosin, 100x]

Fig 7: Moderate to marked nuclear atypia of tumor cells with frequent mitotic figures [Hematoxylin &eosin, 200x]

Fig 8: Strong nuclear expression for Androgen receptor in tumor cells [Immunohistochemistry, 200X]

Fig 9: Moderate to strong Nuclear expression for Estrogen receptor beta in tumor cells [Immunohistochemistry, 200X]

Fig 10 A. Strong nuclear expression for ER alpha in low-grade papillary urothelial carcinoma

10 B. Strong nuclear expression for ER alpha in high-grade urothelial carcinoma.

OBSERVATIONS AND RESULTS

The study was conducted in the Department of Urology and Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan, India from October 2020 to January 2022 in an ambispective manner. A total of 132 patients taken in both prospective and retrospective manner, which were diagnosed with urinary bladder mass and undergone surgery for the same, either transurethral resection of bladder tumor (TURBT), TUR biopsy, random bladder biopsies or radical/palliative cystectomy and diagnosed with urinary bladder neoplasm on histopathological examination (HPE) were included in the study. For both prospective and retrospective cases, baseline assessment of the patients were done, type of surgery underwent by the patient and perioperative parameters were noted and results are as follows.

Age(years)	Frequency	Percentage
31-40	7	5.30%
41-50	19	14.39%
51-60	38	28.79%
61-70	42	31.82%
71-80	22	16.67%
>80	4	3.03%
Mean ± SD	61.28 ± 12.1	
Median(25th-75th percentile)	61.5(54-69.25)	
Range	31-101	

Table 7:-Distribution of age (years) of patients.

Most of the patients i.e. 42(31.82%) belonged to the age group of 61-70 years followed by 51-60 years (28.79%), 71-80 years (16.67%) and 41-50 years(14.39%). Comparatively lesser number of patients were there at extremes of age, with 5.30% patients of age <40 years and 3.03% patients of age>80 years. Mean value of age(years) of patients was 61.28 ± 12.1 with median(25th-75th percentile) of 61.5(54-69.25). It is shown in table 6.

Gender	Frequency	Percentage
Female	16	12.12%
Male	116	87.88%
Total	132	100.00%

116(87.88%) patients were males and 16(12.12%) patients were females.

It is shown in table 7.

Histologic stage and grade	Frequency	Percentage
TaG1	27	20.45%
TaG3	4	3.03%
T1G1	14	10.61%
T1G3	42	31.82%
T2	39	29.55%
T3b	5	3.79%
T4a	1	0.76%
Total	132	100.00%

 Table 9:-Distribution of histologic stage and grade of tumors.

The Histologic stage and grade of maximum patients (31.82%) was high grade with invasion to lamina propria (T1G3). About 20.45% of patients had low grade non invasive carcinoma(TaG1), 3.03% patients had non invasive high grade carcinoma (TaG3), 10.61% patients had low grade carcinoma with invasion to lamina propria(T1G1), 29.55% of patients had muscle invasive disease (T2), 5 patients had T3b disease and 1 out of 132 patients had T4a disease.It is shown in table 8

Pathological variant	Frequency	Percentage
Urothelial	108	81.82%
Chondrosarcomatous	1	0.76%
Plasmacytoid	1	0.76%
Sarcomatoid	1	0.76%
Small round blue cell tumor	1	0.76%
Squamous	16	12.12%
Adenocarcinoma	4	3.03%
Total	132	100.00%

Table 10:-Distribution of pathological variants of tumors in patients.

108 patients had pure urothelial variant followed by squamous differentiation in 16 patients, adenocarcinoma in 4 patients, chondrosarcomatous differentiation in 1, plasmacytoid variant in 1, sarcomatoid variant in 1 and small round blue cell tumor in 1 out of 132 patients. It is shown in table 9.

Size(cm)	Frequency	Percentage
<3 cm	36	27.27%
3 to 5 cm	51	38.64%
>5 cm	45	34.09%
Mean ± SD	4.29 ± 2.32	
Median(25th-75th percentile)	4(2.65-5.6)	
Range	0.5-16	

Table 11:-Distribution of size (in cm) of tumors.

In the majority of patients (38.64%), size of bladder tumor was between 3 to 5 cm followed by >5 cm in 34.09% of patients. Size was <3 cm in only 36 out of 132 patients (27.27%). Mean value of size of patients was 4.29 ± 2.32 cm with median(25th-75th percentile) of 4(2.65-5.6).

Focality	Frequency	Percentage
Unifocal	83	62.88%
In bladder diverticulum	1	0.76%
Multifocal	48	36.36%
Total	132	100.00%

Table 12:-Distribution of focality of bladder malignancy in patients.

Majority of bladder tumors were unifocal (62.88%). 36.36% of patients had multifocal tumors. In 1 of the patients tumor was found in bladder diverticulum. It is shown in table 11.

 Table 13:-Distribution of metastasis at presentation of patients.

Metastasis at presentation	Frequency	Percentage
No	126	95.45%
Yes	6	4.55%
Total	132	100.00%

Distant metastasis at presentation was present in only 6 out of 132 patients (4.55%).

Surgery done	Frequency	Percentage
TURBT	91	68.94%
Palliative cystectomy	2	1.52%
Random bladder biopsies	1	0.76%
RC with IC	19	14.39%
RC with neobladder	1	0.76%
Restage TURBT	1	0.76%
TUR biopsy	17	12.88%
Total	132	100.00%

 Table 14:-Distribution of surgery done on patients.

Majority of patients (68.94%) in our study underwent TURBT. Radical cystectomy with ileal conduit (RC with IC) was done in 19 patients, radical cystectomy (RC) with neobladder in 1 patient, TUR biopsy in 19 patients, palliative cystectomy in 2 patients, random bladder biopsies in 1 patient, and restage TURBT in 1 out of 132 patients. It is shown in table 13.

Complications	Frequency	Percentage(of total cases)
None	101	76.5%
AKI	1	0.76%
Cardiac arrest	1	0.76%
Hematuria	5	3.79%
Iatrogenic urinary bladder perforation	4	3.03%
Total	112	84.84%

Table 15:-Distribution of complications in patients undergoing TURBT/TUR Biopsy.

Table 16:-Distribution of complications in patients undergoing radical/palliative

Complications	Frequency	Percentage(of total cases)
None	11	8.33%
Abdominal ileus	1	0.76%
Anemia	1	0.76%
Hypotension	1	0.76%
Intestinal obstruction	1	0.76%
Left lower limb DVT post op	1	0.76%
Fever	2	1.52%
Wound dehiscence	1	0.76%
Respiratory complications	1	0.76%
Total	20	15.15%

cystectomy

Table 17:-Distribution of complications in patients undergoing TURBT/TUR Biopsy asper Clavein Dindo classification.

Clavein dindo classification	Frequency	Percentage(of total cases)
None	101	76.51%
1	0	0%
2	0	0%
3a	0	0%
3b	9	6.84%
4a	1	0.76%
4b	0	0%
5	1	0.76%
Total	112	84.84%

Table 18:-Distribution of complications in patients undergoing radical/palliative

cystectomy as per Clavein Dindo classification.

Clavein dindo classification	Frequency	Percentage(of total cases)
None	11	8.33%
1	3	2.27%
2	3	2.27%
3a	0	0%
3b	1	0.76%
4a	1	0.76%
4b	1	0.76%
5	0	0%
Total	20	15.15%

Most of the patients (84.85%) had an uneventful course in hospital postoperatively. The various complications seen in patients undergoing TURBT/TUR biopsy are listed in table 14 and in patients undergoing radical/palliative cystectomy are listed in table 15. As per Clavein Dindo classification, as shown in table 16 for transurethral surgeries, 9 out of 112 patients had grade 3b complications i.e. requiring intervention under anaesthesia, 1 patient had acute kidney injury and 1 patient died immediate postoperatively due to cardiac arrest. Similarly table 17 shows complication in patients undergoing cystectomies as per Clavein Dindo

classification. 6 of 20 patients had grade 1 and 2 complications. 1 patient had intestinal obstruction requiring surgical intervention(grade 3b), 1 patient had grade 4a and 1 had grade 4b (Multi organ failure) complications.

Length of hospital stay post-surgery	Frequency	Percentage
<3 days	75	56.82%
3 to 7 days	35	26.52%
>7 days	18	13.64%
Death	4	3.03%
Mean ± SD	3.7 ± 3.91	
Median(25th-75th percentile)	2(2-4)	
Range	1-30	

Table 19:-Distribution of length of hospital stay post-surgery of patients.

In 56.82% of patients, postoperative length of hospital stay was <3 days; 26.52% of patients stayed for 3 to 7 days and 13.64% had postoperative hospital stay of >7 days . 4 out of 132 patients died postoperatively. Mean value of length of hospital stay of patients was 3.7 ± 3.91 with median(25th-75th percentile) of 2(2-4). It is shown in table 18.

Table 20:-Distribution of ER alpha in tumor cells in patients.

ER alpha	Frequency	Percentage
Negative	127	96.21%
Positive	5	3.79%
Total	132	100.00%

ER alpha was negative in most of the patients. Only 5 out of 132 patients (3.79%) showed ER alpha positivity.

ER beta	Frequency	Percentage
Negative	64	48.48%
Positive	68	51.52%
Total	132	100.00%

Table 21:-Distribution of ER beta in tumor cells of patients.

In 51.52% of patients, ER beta was positive.

AR	Frequency	Percentage
Negative	48	36.36%
Positive	84	63.64%
Total	132	100.00%

 Table 22:-Distribution of AR in tumor cells of patients.

AR positivity was seen in 63.64% of patients.

Age(years)	Negative(n=127)	Positive(n=5)	Total	P value
21.40	7	0	7	
31-40	(100%)	(0%)	(100%)	
41.50	19	0	19	
41-30	(100%)	(0%)	(100%)	
51.60	35	3	38	
51-00	(92.11%)	(7.89%)	(100%)	0.752 [‡]
61 70	41	1	42	0.752
01-70	(97.62%)	(2.38%)	(100%)	
71.80	21	1	22	
/1-00	(95.45%)	(4.55%)	(100%)	
>80	4	0	4	
>00	(100%)	(0%)	(100%)	
Mean ± SD	61.31 ± 12.23	60.6 ± 8.65	61.28 ± 12.09	
Median(25th-	62	55	61.5	0.800*
75th percentile)	(54-69.5)	(55-69)	(54-69.25)	0.099
Range	31-101	53-71	31-101	

* Independent t test, [‡] Fisher's exact test

Age(years)	Negative(n=64)	Positive(n=68)	Total	P value
31.40	2	5	7	
31-40	(28.57%)	(71.43%)	(100%)	
41.50	13	6	19	
41-50	(68.42%)	(31.58%)	(100%)	
51.60	22	16	38	1
31-00	(57.89%)	(42.11%)	(100%)	0.057 [‡]
61.70	14	28	42	0.057
01-70	(33.33%)	(66.67%)	(100%)	
71.80	12	10	22	
/1-00	(54.55%)	(45.45%)	(100%)	
>80	1	3	4	
200	(25%)	(75%)	(100%)	
Mean ± SD	60.53 ± 12.03	61.99 ± 12.2	61.28 ± 12.09	
Median(25th-	60	64.5	61.5	0.402*
75th percentile)	(51.75-69.25)	(55.75-69.25)	(54-69.25)	0.492
Range	38-101	31-90	31-101	

* Independent t test, [‡] Fisher's exact test

Age(years)	Negative(n=48)	Positive(n=84)	Total	P value
31.40	1	6	7	
31-40	(14.29%)	(85.71%)	(100%)	
41.50	10	9	19	-
41-50	(52.63%)	(47.37%)	(100%)	
51.60	14	24	38	
51-00	(36.84%)	(63.16%)	(100%)	0.328 [‡]
61.70	16	26	42	0.520
01-70	(38.10%)	(61.90%)	(100%)	
71.80	5	17	22	
/1-00	(22.73%)	(77.27%)	(100%)	
200	2	2	4	
>80	(50%)	(50%)	(100%)	
Mean ± SD	61 ± 11.86	61.44 ± 12.29	61.28 ± 12.09	
Median(25th-	60	62	61.5	0.941*
75th percentile)	(53.5-69)	(54.75-70)	(54-69.25)	0.841
Range	31-90	32-101	31-101	

Table 25:-Association of age(years) with AR.

* Independent t test, [‡] Fisher's exact test

Distribution of ER alpha, ER beta and AR positivity was comparable in age groups and was not statistically significant (table 22,23,24)

Gender	Negative(n=127)	Positive(n=5)	Total	P value
Famala	14	2	16	
remaie	(87.50%)	(12.50%)	(100%)	
Mala	113	3	116	O 111 [‡]
Male	(97.41%)	(2.59%)	(100%)	0.111
Total	127	5	132	
10101	(96.21%)	(3.79%)	(100%)	

Table 26:-Association of gender with ER alpha.

^{*} Fisher's exact test

Gender	Negative(n=64	Positive(n=68)	Total	P value
Famala	6	10	16	
remate	(37.50%)	(62.50%)	(100%)	
Mala	58	58	116	0.2488
Male	(50%)	(50%)	(100%)	0.348
Total	64	68	132	
Totai	(48.48%)	(51.52%)	(100%)	

Table 27:-Association of gender with ER beta.

[§] Chi square test

Gender	Negative(n=48)	Positive(n=84)	Total	P value
Fomala	6	10	16	
I'emaie	(37.50%)	(62.50%)	(100%)	
Mala	42	74	116	0.028
Male	(36.21%)	(63.79%)	(100%)	0.92*
Total	48	84	132	
10(a)	(36.36%)	(63.64%)	(100%)	

Table 28:-Association of gender with AR.

^s Chi square test

ER alpha, ER beta and AR positivity was comparable in all age groups.

Histologic stage and grade	Negative(n=127)	Positive(n=5)	Total	P value
TICI	13	1	14	
1101	(92.86%)	(7.14%)	(100%)	
T ₂ C1	27	0	27	
1401	(100%)	(0%)	(100%)	
T1C2	40	2	42	
11G3	(95.24%)	(4.76%)	(100%)	
	4	0	4	
1805	(100%)	(0%)	(100%)	0.710 [‡]
T2	37	2	39	0.717
12	(94.87%)	(5.13%)	(100%)	
T2b	5	0	5	
130	(100%)	(0%)	(100%)	
T4a	1	0	1	
14a	(100%)	(0%)	(100%)	
Total	127	5	132	
10(a)	(96.21%)	(3.79%)	(100%)	

Table 29:-Association of histologic stage and grade with ER alpha.

^{*} Fisher's exact test

No statistically significant correlation was found between ER alpha positive status and tumor stage and grade.(p value=0.719).

Histologic stage and grade	Negative(n=64)	Positive(n=68)	Total	P value
T1C1	5	9	14	
1101	(35.71%)	(64.29%)	(100%)	
T ₂ G1	10	17	27	
1401	(37.04%)	(62.96%)	(100%)	
T1C3	22	20	42	
1105	(52.38%)	(47.62%)	(100%)	
T ₂ C3	1	3	4	
1405	(25%)	(75%)	(100%)	0.382 [‡]
ТЭ	23	16	39	
12	(58.97%)	(41.03%)	(100%)	
тар	2	3	5	
130	(40%)	(60%)	(100%)	
Τ 4ο	1	0	1	
1+a	(100%)	(0%)	(100%)	
Total	64	68	132	
10(a)	(48.48%)	(51.52%)	(100%)	

Table 30:-Association of histologic stage and grade with ER beta.

^{*} Fisher's exact test

Distribution of ER beta positivity was comparable in various histologic stages and grades and no statistically significant difference was found. (T1G1(64.29%) vs TaG1(62.96%) vs T1G3(47.62%) vs TaG3(75%) vs T2(41.03%) vs T3b(60%) vs T4a(0%)). (p value=0.382). It is shown in table 29.

Histologic stage and grade	Negative(n=48)	Positive(n=84)	Total	P value
T1G1	5	9	14	
1101	(35.71%)	(64.29%)	(100%)	
T ₂ C1	7	20	27	
1401	(25.93%)	(74.07%)	(100%)	
T1C3	13	29	42	
1105	(30.95%)	(69.05%)	(100%)	
TaG3	1	3	4	
1405	(25%)	(75%)	(100%)	0.214 [‡]
ΤΊ	18	21	39	0.214
12	(46.15%)	(53.85%)	(100%)	
ТЗЬ	4	1	5	
150	(80%)	(20%)	(100%)	
T4a	0	1	1	
14a	(0%)	(100%)	(100%)	
Total	48	84	132	
Total	(36.36%)	(63.64%)	(100%)	

Table 31:-Association of histologic stage and grade with AR.

[‡] Fisher's exact test

No statistically significant correlation was found between AR positive status and tumor stage and grade.(p value=0.214).

Pathological type	Negative(n=127)	Positive(n=5)	Total	P value
Adapagargingma	4	0	4	
Adenocaremonia	(100%)	(0%)	(100%)	
Chandrasaraamataus	1	0	1	
Chondrosarcomatous	(100%)	(0%)	(100%)	
Dissementation	1	0	1	
r lasillacytolu	(100%)	(0%)	(100%)	
Sarcomatoid	1	0	1	1 [‡]
	(100%)	(0%)	(100%)	
Small round blue cell	1	0	1	1
tumor	(100%)	(0%)	(100%)	
Squamous	16	0	16	
Squamous	(100%)	(0%)	(100%)	
Urothelial	103	5	108	
	(95.37%)	(4.63%)	(100%)	
Total	127	5	132	
Total	(96.21%)	(3.79%)	(100%)	

Table 32:-Association of pathological type with ER alpha.

^{*} Fisher's exact test

Pathological type	Negative(n=64)	Positive(n=68)	Total	P value
Adapagargingma	3	1	4	
Adenocarcinoma	(75%)	(25%)	(100%)	
Chandrasaraamataus	1	0	1	
Chondrosarcomatous	(100%)	(0%)	(100%)	
Diagmagytoid	0	1	1	
Plasmacytold	(0%)	(100%)	(100%)	
G (1)	1	0	1	0 584 [‡]
Sarcomatoid	(100%)	(0%)	(100%)	
Small round blue cell	0	1	1	0.504
tumor	(0%)	(100%)	(100%)	
Squamous	8	8	16	
Squamous	(50%)	(50%)	(100%)	
Urothelial	51	57	108	
	(47.22%)	(52.78%)	(100%)	
Total	64	68	132	
Total	(48.48%)	(51.52%)	(100%)	

Table 33:-Association of	of pathological type with ER	k beta.
	of putilological type with El	- Setul

[‡] Fisher's exact test

Pathological type	Negative(n=48)	Positive(n=84)	Total	P value
A dama agnain a ma	3	1	4	
Adenocarcinoma	(75%)	(25%)	(100%)	
Chandrasaraamataus	0	1	1	
Chondrosarcomatous	(0%)	(100%)	(100%)	
Plasmaautoid	0	1	1	
r lasillacytold	(0%)	(100%)	(100%)	
G (1	0	1	1	0.384 [‡]
Sarcomatold	(0%)	(100%)	(100%)	
Small round blue cell	0	1	1	0.304
tumor	(0%)	(100%)	(100%)	
Squamous	8	8	16	
Squamous	(50%)	(50%)	(100%)	
Urothelial	37	71	108	
	(34.26%)	(65.74%)	(100%)	
Total	48	84	132	
Total	(36.36%)	(63.64%)	(100%)	

Table 34:-Association of pathological type with AR.

* Fisher's exact test

No statistically significant correlation was found between ER alpha, ER beta and AR positivity and pathologic variants of bladder tumors.

Size(cm)	Negative(n=127)	Positive(n=5)	Total	P value
<2 am	35	1	36	
	(97.22%)	(2.78%)	(100%)	
3 to 5 cm	48	3	51	0.726‡
3 to 5 cm	(94.12%)	(5.88%)	(100%)	0.750
>5 am	44	1	45	
>5 0111	(97.78%)	(2.22%)	(100%)	
Mean ± SD	4.31 ± 2.34	3.74 ± 1.55	4.29 ± 2.32	
Median(25th-	4	3.3	4	0.720 [†]
75th percentile)	(2.6-5.6)	(3.2-4)	(2.65-5.6)	0.729
Range	0.5-16	2-6.2	0.5-16	

Table 35:-Association of size(cm) with ER alpha.

[†] Mann Whitney test, [‡] Fisher's exact test

Distribution of ER alpha positive status was comparable in different sizes of tumors. (p value=0.736)

Size(cm)	Negative(n=64)	Positive(n=68)	Total	P value
<3 cm	15	21	36	0.03 [§]
	(41.67%)	(58.33%)	(100%)	
3 to 5 cm	20	31	51	
	(39.22%)	(60.78%)	(100%)	
>5 cm	29	16	45	
	(64.44%)	(35.56%)	(100%)	
Mean ± SD	4.63 ± 2.15	3.96 ± 2.44	4.29 ± 2.32	0.02^{\dagger}
Median(25th-	5	3.25	4	
75th percentile)	(3.15-6)	(2.5-5)	(2.65-5.6)	
Range	0.5-9	1-16	0.5-16	

Table 36:-Association of size(cm) with ER beta.

[†] Mann Whitney test, [§] Chi square test

Proportion of ER beta positive patients was significantly higher in <3 cm group(58.33%), 3 to 5 cm group (60.78%) as compared to >5 cm group (35.56%). (p value=0.03)

Median(25th-75th percentile) of size(cm) in ER beta negative was 5(3.15-6) which was significantly higher as compared to ER beta positive (3.25(2.5-5)). (p value=0.02)

Size(cm)	Negative(n=48)	Positive(n=84)	Total	P value
<3 cm	12	24	36	$0.084^{\$}$
	(33.33%)	(66.67%)	(100%)	
3 to 5 cm	14	37	51	
	(27.45%)	(72.55%)	(100%)	
>5 cm	22	23	45	
	(48.89%)	(51.11%)	(100%)	
Mean ± SD	4.52 ± 2.29	4.15 ± 2.33	4.29 ± 2.32	0.244 [†]
Median(25th-	4.5	3.8	4	
75th percentile)	(2.875-6.275)	(2.65-5.25)	(2.65-5.6)	
Range	0.5-9	1-16	0.5-16	

Table 37:-Association of size(cm) with AR.

[†] Mann Whitney test, [§] Chi square test

Distribution of AR positive status was not statistically significant in different sizes of tumors.

Multifocality	Negative(n=127)	Positive(n=5)	Total	P value
No	81	3	84	
	(96.43%)	(3.57%)	(100%)	1 [‡]
Yes	46	2	48	
	(95.83%)	(4.17%)	(100%)	
Total	127	5	132	
	(96.21%)	(3.79%)	(100%)	

 Table 38:-Association of multifocality with ER alpha.

* Fisher's exact test

ER alpha positivity status was not associated with multifocality.
Multifocality	Negative(n=64)	Positive(n=68)	Total	P value	
No	34	50	84		
	(40.48%)	(59.52%)	(100%)		
Yes	30	18	48	0.0158	
	(62.50%)	(37.50%)	(100%)	0.015	
Total	64	68	132		
	(48.48%)	(51.52%)	(100%)		

 Table 39:-Association of multifocality with ER beta.

[§] Chi square test

Proportion of ER beta positive patients was significantly higher in patients with unifocal bladder tumors(59.52%) as compared to patients with multifocality(37.50%). (p value=0.015)

Multifocality	Negative(n=48)	Positive(n=84)	Total	P value
No	29	55	84	
	(34.52%)	(65.48%)	(100%)	
Yes	19	29	48	0.5618
	(39.58%)	(60.42%)	(100%)	0.501
Total	48	84	132	
	(36.36%)	(63.64%)	(100%)	

Table 40:-Association of multifocality with AR.

[§] Chi square test

Distribution of AR receptors was comparable in patients without and with multifocality. (No(65.48%) vs Yes(60.42%)). (p value=0.561)

Metastasis at presentation	Negative(n=127)	Positive(n=5)	Total	P value
No	123	3	126	
	(97.62%)	(2.38%)	(100%)	
Yes	4	2	6	0.016
	(66.67%)	(33.33%)	(100%)	0.010
Total	127	5	132	
	(96.21%)	(3.79%)	(100%)	

 Table 41:-Association of metastasis at presentation with ER alpha.

ER alpha expression was significantly higher in patients with metastasis at presentation (33.33%) as compared to patients without metastasis at presentation (2.38%). (p value=0.016)

Metastasis at presentation	Negative(n=64)	Positive(n=68)	Total	P value
No	61	65	126	
	(48.41%)	(51.59%)	(100%)	
Yes	3	3	6	1‡
	(50%)	(50%)	(100%)	1
Total	64	68	132	
	(48.48%)	(51.52%)	(100%)	

Table 42:-Association of metastasis at presentation with ER beta.

* Fisher's exact test

Distribution of ER beta positivity was comparable in patients without and with metastasis at presentation. (No(51.59%) vs Yes(50%)). (p value=1)

Metastasis at presentation	Negative(n=48)	Positive(n=84)	Total	P value
No	47	79	126	
No	(37.30%)	(62.70%)	(100%)	
Yes	1	5	6	0.416‡
	(16.67%)	(83.33%)	(100%)	0.416*
Total	48	84	132	
	(36.36%)	(63.64%)	(100%)	

Table 43:-Association of metastasis at presentation with AR.

^{*} Fisher's exact test

AR positivity was not found to be associated with metastasis at presentation. (No(62.70%) vs Yes(83.33%)). (p value=0.416)

Complications	Negative(n=127)	Positive(n=5)	Total	P value
Nona	108	4	112	
None	(96.43%)	(3.57%)	(100%)	
Abdominal	1	0	1	
ileus	(100%)	(0%)	(100%)	
AVI	0	1	1	
ANI	(0%)	(100%)	(100%)	
Anomio	1	0	1	
Anenna	(100%)	(0%)	(100%)	
Cardiaa arreat	1	0	1	
Calulac allest	(100%)	(0%)	(100%)	
Hamaturia	5	0	5	
Ticillatul la	(100%)	(0%)	(100%)	
Humotonsion	1	0	1	
Hypotension	(100%)	(0%)	(100%)	0.345 [‡]
Iatrogenic	4	0	1	
urinary bladder	+ (100%)	(0%)	+ (100%)	
perforation	(100 %)	(070)	(100 %)	
Intestinal	1	0	1	
obstruction	(100%)	(0%)	(100%)	
Left lower limb	1	0	1	
DVT postop	(100%)	(0%)	(100%)	
Poston ileus	3	0	3	
T Ostop neus	(100%)	(0%)	(100%)	
Respiratory	1	0	1	
complications	(100%)	(0%)	(100%)	
Total	127	5	132	
Total	(96.21%)	(3.79%)	(100%)	

 Table 44:-Association of complications with ER alpha.

No statistically significant association was found between complications and ER alpha receptor positivity in patients (p value=0.345).

Complications	Negative(n=64)	Positive(n=68)	Total	P value
None	56	56	112	
None	(50%)	(50%)	(100%)	
Abdominal ileus	1	0	1	
Abdominar neus	(100%)	(0%)	(100%)	
AKI	0	1	1	
AM	(0%)	(100%)	(100%)	
Anomio	1	0	1	
Ancinia	(100%)	(0%)	(100%)	
Cardiac arrest	0	1	1	
Calulac allest	(0%)	(100%)	(100%)	
Hamaturia	0	5	5	
nematuria	(0%)	(100%)	(100%)	
Humatansian	1	0	1	-
Hypotension	(100%)	(0%)	(100%)	0.098^{\ddagger}
Iatrogenic	1	3	4	
urinary bladder	1 (25%)	(75%)	т (100%)	
perforation	(2370)	(1570)	(10070)	
Intestinal	1	0	1	
obstruction	(100%)	(0%)	(100%)	
Left lower limb	1	0	1	
DVT postop	(100%)	(0%)	(100%)	
Poston ileus	1	2	3	
T ostop neus	(33.33%)	(66.67%)	(100%)	
Respiratory	1	0	1	
complications	(100%)	(0%)	(100%)	
Total	64	68	132	
1 Utal	(48.48%)	(51.52%)	(100%)	

 Table 45:-Association of complications with ER beta.

No statistically significant association was found between complications and ER beta receptor positivity in patients (p value=0.098).

Complications	Negative(n=48)	Positive(n=84)	Total	P value
None	41	71	112	
None	(36.61%)	(63.39%)	(100%)	
Abdominal ileus	0	1	1	
Abdominar neus	(0%)	(100%)	(100%)	
AKI	0	1	1	
AM	(0%)	(100%)	(100%)	
Anomio	0	1	1	
Allelilla	(0%)	(100%)	(100%)	0.246‡
Bladder	0	1	1	0.540
perforation	(0%)	(100%)	(100%)	
Candia a annast	0	1	1	
Cardiac arrest	(0%)	(100%)	(100%)	
II	1	4	5	
Hematuria	(20%)	(80%)	(100%)	
II	0	1	1	
Hypotension	(0%)	(100%)	(100%)	
Iatrogenic	1	2	4	
urinary bladder	1 (25%)	3 (750/1)	(100%)	
perforation	(23%)	(73%)	(100%)	
Intestinal	1	0	1	-
obstruction	(100%)	(0%)	(100%)	
Left lower limb	0	1	1	-
DVT postop	(0%)	(100%)	(100%)	
Dester ileus	3	0	3	
Postop neus	(100%)	(0%)	(100%)	
Respiratory	1	0	1	
complications	(100%)	(0%)	(100%)	
Total	48	84	132	
Total	(36.36%)	(63.64%)	(100%)	

Table 46:-Association of complications with AR.

^{*} Fisher's exact test

No statistically significant association was found between complications and AR receptor positivity in patients (p value=0.346).

Length of				
hospital stay	Negative	Positive	Total	P value
post-surgery				
<2 days	72	3	75	
<5 days	(96%)	(4%)	(100%)	
2 to 7 days	33	2	35	
5 to 7 days	(94.29%)	(5.71%)	(100%)	0.725 [‡]
. 7.1	18	0	18	0.725
>7 days	(100%)	(0%)	(100%)	
Death	4	0	4	
Death	(100%)	(0%)	(100%)	
Mean ± SD	3.74 ± 3.97	2.8 ± 1.64	3.7 ± 3.91	
Median(25th-	2	2	2	0.026
75th percentile)	(2-4)	(2-4)	(2-4)	0.830
Range	1-30	1-5	1-30	

Table 47:-Association of length of hospital stay post-surgery with ER alpha.

[†] Mann Whitney test, [‡] Fisher's exact test

Length of				
hospital stay	Negative	Positive	Total	P value
post surgery				
-3 days	37	38	75	
<5 days	(49.33%)	(50.67%)	(100%)	
2 to 7 days	13	22	35	
5 to 7 days	(37.14%)	(62.86%)	(100%)	0 239 [‡]
. 7.1	12	6	18	0.239
>7 days	(66.67%)	(33.33%)	(100%)	
Deeth	2	2	4	
Death	(50%)	(50%)	(100%)	
Mean ± SD	3.9 ± 3.88	3.52 ± 3.96	3.7 ± 3.91	
Median(25th-	2	2	2	0.010 [†]
75th percentile)	(2-4)	(2-4)	(2-4)	0.818
Range	1-20	1-30	1-30	

Table 48:-Association of length of hospital stay post-surgery with ER beta.

[†] Mann Whitney test, [‡] Fisher's exact test

Length of				
hospital stay	Negative	Positive	Total	P value
post surgery				
<3 days	26	49	75	
<5 days	(34.67%)	(65.33%)	(100%)	
2 to 7 days	12	23	35	
5 to 7 days	(34.29%)	(65.71%)	(100%)	0.464 [‡]
. 7.1	7	11	18	
>7 days	(38.89%)	(61.11%)	(100%)	
Deeth	3	1	4	
Death	(75%)	(25%)	(100%)	
Mean ± SD	4.33 ± 5.41	3.36 ± 2.77	3.7 ± 3.91	
Median(25th-	2	2	2	0.507
75th percentile)	(2-4)	(2-4)	(2-4)	0.387
Range	1-30	1-13	1-30	

Table 49:-Association of length of hospital stay post-surgery with AR.

[†] Mann Whitney test, [‡] Fisher's exact test

Distribution of ER alpha, ER beta and AR positivity was not found to be associated with length of hospital stay post-surgery.

Median(25th-75th percentile) of length of hospital stay post-surgery in ER alpha, ER beta and AR negative patients and positive patients had no significant association between them. (Tables 46,47,48)

Compli cations	Palliativ e cystecto my(n=2)	Rando m bladde r biopsie s(n=1)	RC with IC(n =19)	RC with neoblad der(n=1)	Restag e TURB T(n=1)	TUR biopsy (n=17)	TURB T(n=91)	Tota l	P val ue
None	2 (100%)	1	11	0 (0%)	1	15	82	112	0.0

 Table 50:-Association of complications with surgery done.

		(100%)	(57.8		(100%)	(88.24	(90.11	(84.	07*
			9%)			%)	%)	85%	
)	
Abdomi			1					1	
nal	0 (0%)	0 (0%)	(5.26	0 (0%)	0 (0%)	0 (0%)	0 (0%)	(0.7	
ileus			%)					6%)	
			0				1	1	
AKI	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	$\begin{bmatrix} 1 \\ (1 \ 1007) \end{bmatrix}$	(0.7	
			(0%)				(1.10%)	6%)	
			0					1	-
Anemia	0 (0%)	0 (0%)		1 (100%)	0 (0%)	0 (0%)	0 (0%)	(0.7	
			(0%)					6%)	
Bladder			0				1	1	
perforat	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	1 (1.1007)	(0.7	
ion			(0%)				(1.10%)	6%)	
Cardiaa			0				1	1	
Calulac	0 (0%)	0 (0%)	(0%)	0 (0%)	0 (0%)	0 (0%)	$(1, 100^{-})$	(0.7	
allest			(0%)				(1.10%)	6%)	
Hematu			0			1	Δ	5	
ria	0 (0%)	0 (0%)	(0%)	0 (0%)	0 (0%)	(5.88%	(4,40%)	(3.7	
110			(070))	(4.4070)	9%)	
Hypote			1					1	
nsion	0 (0%)	0 (0%)	(5.26	0 (0%)	0 (0%)	0 (0%)	0 (0%)	(0.7	
nsion			%)					6%)	
Latroge									
nic						1		3	
urinary	0(0%)	0(0%)	0	0(0%)	0 (0%)	1	2	<i>S</i>	
bladder	0(070)	0(070)	(0%)	0(070)	0(070)	(3.88%)	(2.20%)	(2.2)	
perforat)		170)	
ion									
Intestin			1					1	
al	0 (0%)	0 (0%)	(5.26	0 (0%)	0 (0%)	0 (0%)	0 (0%)	(0.7	
obstruct			%)					6%)	

ion									
Left lower limb DVT postop	0 (0%)	0 (0%)	1 (5.26 %)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (0.7 6%)	
Postop ileus	0 (0%)	0 (0%)	3 (15.7 9%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	3 (2.2 7%)	
Respira tory complic ations	0 (0%)	0 (0%)	1 (5.26 %)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (0.7 6%)	
Total	2 (100%)	1 (100%)	19 (100 %)	1 (100%)	1 (100%)	17 (100%)	91 (100%)	132 (100 %)	

Patients who underwent Palliative cystectomy, Random bladder biopsies and Restage TURBT had no complications. On the other hand, out of 19 patients who underwent RC with IC, 11 (57.89%) patients had no complications, 1 (5.26%) patient had abdominal ileus, hypotension, intestinal obstruction, left lower limb DVT postop and respiratory complications each and 3 (15.79%) patients had postop ileus. 1 patient of RC with neobladder had anemia. 1 (5.88%) patient of TUR biopsy had hematuria and latrogenic urinary bladder perforation each. 4 (4.40%) patients of TURBT had hematuria, 2 (2.20%) patients had latrogenic urinary bladder perforation and 1 (1.10%) patient had bladder perforation, AKI, cardiac arrest each. So distribution of complications among various surgeries was significantly different. (p value=0.007)

ER alnha	ER beta		Total	P value	
	Negative(n=64)	Positive(n=68)	1000		
Nagatiya	63	64	127		
Negative	(98.44%)	(94.12%)	(96.21%)		
Positiva	1	4	5	0.367‡	
1 OSILIVE	(1.56%)	(5.88%)	(3.79%)	0.307	
Total	64	68	132		
10(a)	(100%)	(100%)	(100%)		

 Table 51:-Association of ER alpha with ER beta.

Distribution of ER alpha was comparable between negative and positive ER beta. (ER alpha negative:- 98.44% vs 94.12% respectively, ER alpha positive:- 1.56% vs 5.88% respectively) (p value=0.367).

ER alnha	AR		Total	P value	
	Negative(n=48)	Positive(n=84)	1000		
Nagatiya	47	80	127		
Negative	(97.92%)	(95.24%)	(96.21%)		
Dositivo	1	4	5	0.652‡	
rosuive	(2.08%)	(4.76%)	(3.79%)	0.055	
Total	48	84	132		
10(a)	(100%)	(100%)	(100%)		

Table 52:-Association of ER alpha with AR.

^{*} Fisher's exact test

Distribution of ER alpha was comparable between negative and positive AR. (ER alpha negative:- 97.92% vs 95.24% respectively, ER alpha positive:- 2.08% vs 4.76% respectively) (p value=0.653).

ER beta	AR		Total	P value	
	Negative(n=48)	Positive(n=84)	1000		
Negative	27	37	64		
Negative	(56.25%)	(44.05%)	(48.48%)		
Positive	21	47	68	0.177§	
i Ositive	(43.75%)	(55.95%)	(51.52%)	0.177	
Total	48	84	132		
10(01	(100%)	(100%)	(100%)		

 Table 53:-Association of ER beta with AR.

[§] Chi square test

Distribution of ER beta was comparable between negative and positive AR. (ER beta negative:- 56.25% vs 44.05% respectively, ER beta positive:- 43.75% vs 55.95% respectively) (p value=0.177).

DISCUSSION

Urinary bladder carcinoma is the fourth most common malignancy in males and eleventh most common one in females(14). It is a malignancy with heterogeneous presentation, diverse biological behaviour and sometimes an unpredictable response to available therapeutic modalities. Looking at these features, its high progression rate on existing treatment modalities and resulting significant mortality, the quest for new therapeutic targets continues. Androgen and estrogen receptors have recently been explored as a promising target for treatment of bladder cancer patients. The gender disparity in incidence as well as the association of more aggressive bladder malignancies in females has further raised the question of relationship of sex steroid receptor expression and gender. In our study, 132 patients who underwent surgical management for bladder cancer and have not received any previous chemotherapeutic treatment were included from a time period of january 2019 to january 2022. Their tumor blocks were analyzed for 3 prominent steroid receptors- ER alpha, ER beta and AR. 116(87.88%) patients were males and 16(12.12%) patients were females. Most of the patients i.e. 42(31.82%) belonged to the age group of 61-70 years followed by 51-60 years (28.79%). The Histologic stage and grade of maximum patients (31.82%) was high grade with invasion to lamina propria (T1G3) followed by muscle invasive disease (T2) in 29.55% of patients. Distant metastases at presentation was there in only 6 of 132 patients. Majority of patients had tumors of size >3cm, with unifocal tumors in majority. Pure urothelial variant of bladder cancer was found in >80% of tumors.

A study by Mashhadi et al (62) had 85.7% of patients as male. In the study conducted by Miyamato et al, 148 patients were males and 40 were females. Nam et al showed similar gender distribution, supporting the male predominance of the disease. Gupta et al(15) found male to female ratio of bladder cancer to be 8.6:1.

Bladder cancer is rare in people younger than 50 years of age, even though it can occur at any age. The incidence of malignancy is directly proportional to age with the median age at diagnosis to be about 70 years for both genders(16). Mashhadi et al(62) also found the mean age to be 66.2 ± 12.10 years of cancer patients in their study, which is similar to ours. Gupta et al(15) stated that the median age of presentation in bladder cancer is 69 years old for males and 71 years old for females. In studies of Miyamato et al and Wagih et al, maximum patients had T2 and T3 disease, in contrast to our study where >60% of patients were of T1G3 and T2 stage, with just 5 out of 132 presenting with T3 disease. This shows improving

awareness and better accessibility to health care facilities, leading to presentation at a lower disease stage. Gupta et al(15) also found that in the Indian population about 40 to 45% of bladder malignancies are high-grade at presentation, with more than half of them being muscle invasive.

The incidence of bladder cancer is higher in men than women. One of the possible reasons for the variation observed is due to differences in occupational exposure and smoking. However, animal studies have shown that along with malignancies that are chemically induced, even bladder malignancies developing spontaneously are significantly higher in male rats than females. Also it has been seen that incidence of bladder cancer in postmenopausal women is more common than women who are premenopausal. The bladder tumors possessing androgen receptors were found to have a positive stimulus on growth due to circulating androgens. In another study, it has been found that antiestrogens can inhibit urothelial carcinoma of the bladder in ER-positive bladder cancer cell lines. In contrast to the above mentioned hypothesis that there might be a role of androgen and estrogen receptor expression in male predominance of bladder cancer, no statistically significant association was found between expression of these receptors and gender. This finding is supported by results of studies by Miyamoto et al and Nam et al. However, Ide et al.(21) in their metanalysis showed that AR expression was down-regulated in female patients in comparison to male patients of ca bladder (P = 0.027)

Only 5 out of 132 patients (3.79%) showed ER alpha positivity in our study. This is close to the results of a study by Bolenz et al (57) who found ER alpha positivity in nine of the 198 specimens (4.5%). In contrast, Miyamoto et al (59) showed ER alpha positivity in 51 out of 188 (27%) primary tumors. In our study, 51.52% of patients had ER beta positivity. This was close to results of Miyamoto et al in which ER beta positivity was there in 93 out of 188 (49%) primary tumors. As far as AR expression is concerned, different studies showed different results. In our study, AR positivity was seen in 63.64% of patients. Our findings were close in this respect to findings of Wagih et al who found expression of AR in 58% of patients. However, different results were described by Nam et al., Boorjian et al.,Mashhadi et al. and Miyamoto et al., who showed the expression of AR in 37% , 53.1% , 22% and 42% of the bladder cancer patients, respectively.

Distribution of ER alpha, ER beta and AR positivity was comparable in all age groups and their correlation was not statistically significant in our study. Miyamoto et al stated that patients with AR-positive tumors tended to be older than those with AR-negative tumors. However, this finding of theirs was not statistically significant (P = 0.0738). In contrast, Pachauri et al (28) found that AR positivity was significantly (P = 0.02) lower among the patients of age <50 years (7.1%) than \geq 50 years (50%).

No statistically significant correlation was found between ER alpha positive status and tumor stage and grade in our study.(p value=0.719). This finding is contrasting to other studies, like Miyamoto et al. who found a lower expression of ER α in high grade and muscle invasive tumors than in low grade tumours.(59) Similar results were found by Bolenz et al(57). Ide et al(21) found expression of ER α to be downregulated significantly in malignant tumors, compared with non-tumors (P < 0.001).

In our study, distribution of ER beta positivity was comparable in various histologic stages and grades and no statistically significant difference was found in their expression. This is again contradictory to what has been stated by Miyamoto et al(59) and metanalysis by Ide et al (21) that there is higher expression of ER beta in tumors with higher grade and stage.

We found no statistically significant correlation was found between AR positive status and tumor stage and grade.(p value=0.214) This result is supported by studies done by Wagih et al and Pachauri et al. The notable point in this respect is that many previous studies which evaluated the correlation between AR and bladder tumor aggressiveness stated conflicting results. For example, Tuygun et al. (61) reported an inverse relationship between AR expression and tumors with higher grades and stage, which is consistent with the findings of Miyamoto et al and Boorjian et al. (17). In contrast, Mir et al. (62) showed that AR expression was greater in muscle invasive tumors (15%) compared to non- invasive ones (9%). Similarly Mashhadi et al. (63) also found direct correlation between AR expression and invasiveness of bladder tumor. Such discrepancies between studies may be due to variation in staining conditions, difference in criterias for receptor expression or difference in study population characteristics.

This discrepancy in results obtained can be attributed to complex nature of the bladder neoplasms, leading to certain unavoidable confounders and effect modifiers that might interfere with the obtained results(62).

Our study was one of its kind to correlate presence of pathologic variants, size, multifocalily and postoperative complications with expression of AR and ER. On correlating expression of all 3 receptors in different pathologic variants and found no statistically significant correlation.

We studied the relationship between expression of sex steroid receptors and various clinical parameters in our study patients. As far as the expression of the sex steroid receptors and their relationship with size of bladder tumors and multifocality is concerned, comparable results were found with ER alpha and AR. But the proportion of ER beta positive patients was significantly higher in <3 cm group (58.33%), 3 to 5 cm group (60.78%) as compared to >5 cm group (35.56%). (p value=0.03). Also, proportion of ER beta positive patients was significantly higher in patients with unifocal bladder tumors(59.52%) as compared to patients with multifocality(37.50%). (p value=0.015)

ER alpha expression was significantly higher in patients with metastasis at presentation (33.33%) as compared to patients without metastasis at presentation (2.38%). (p value=0.016) this finding is contrasting to results of other studies such as Croft et al. who found all metastatic foci are negative of ER α expression in bladder cancer patients(58). Miyamoto et al and Bolenz et al also inversely correlated ER alpha expression with aggressiveness of bladder tumor. Distribution of ER beta and AR positivity was comparable in patients without and with metastasis at presentation.

No statistically significant association was found between complications, length of hospital stay and ER alpha, ER beta and AR receptor positivity in patients. We also correlated expressions of ER alpha, ER beta and AR with each other but found it to be insignificant.

CONCLUSION

In the available literature, there has been great discordance in androgen and estrogen receptor expression and relationship with various clinicopathologic features. Our study is the one with the largest sample size conducted on the Indian population, and it revealed results which differ in various aspects from other similar studies of the past. Though AR and ER beta expression is high in bladder tumors and ER alpha expression is positive in a low percentage of patients which is similar to various other studies, no correlation has been found between their expression and tumor stage and grade. The expression of ER beta was more in small sized unifocal tumors, which was contradictory to other studies showing direct relationship between ER beta and tumor invasiveness. ER alpha expression was found to be higher in metastatic tumors, while other studies found its greater expression in low grade tumors. Such great variation shows that further studies are required on a larger scale from different geographic areas to have an actual understanding of biological behaviour of sex steroid receptors in bladder cancer and to answer the question of judicious implication of therapeutic agents targeting these receptors for benefitting patients who doesnot respond to or progress on conventional therapeutic modalities.

BIBLIOGRAPHY

- Siegel RL, Miller KD, Jemal A. "Cancer statistics, 2016." CA: A Cancer Journal for Clinicians, 2016: 66:7-30.
- Scosyrev E, Trivedi D, Messing E. "Female bladder cancer: incidence, treatment, and outcome." Curr Opin Urol, 2010: 20:404-8.
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249.
- Partin A, Dmochowski R, Kavoussi L, Peters C. Campbell-Walsh-Wein urology. 12th ed. Philadelphia: Elsevier; 2021;3091-3132
- Babjuk M, Burger M, Capoun O, Cohen D, Compérat EM, Dominguez Escrig JL, Gontero P, Liedberg F, Masson-Lecomte A, Mostafid AH, Palou J, van Rhijn BWG, Rouprêt M, Shariat SF, Seisen T, Soukup V, Sylvester RJ. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur Urol. 2022 Jan;81(1):75-94.
- 6. Chrouser, K., et al. Bladder cancer risk following primary and adjuvant external beam radiation for prostate cancer. J Urol, 2005. 174: 107.
- 7. Knowles, M., Hurst, C. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. *Nat Rev Cancer* **15**, 25–41 (2015).
- Carrion, Rafael & Seigne, John. (2002). Surgical Management of Bladder Carcinoma. Cancer control : journal of the Moffitt Cancer Center. 9. 284-92.
- 9. Flaig TW, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Chang S, Downs TM, Efstathiou JA, Friedlander T, Greenberg RE, Guru KA, Guzzo T, Herr HW, Hoffman-Censits J, Hoimes C, Inman BA, Jimbo M, Kader AK, Lele SM, Michalski J, Montgomery JS, Nandagopal L, Pagliaro LC, Pal SK, Patterson A, Plimack ER, Pohar KS, Preston MA, Sexton WJ, Siefker-Radtke AO, Tward J, Wright JL, Gurski LA, Johnson-Chilla A. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020 Mar;18(3):329-354.

- Alderson, Meera et al. 'Histologic Variants of Urothelial Carcinoma: Morphology, Molecular Features and Clinical Implications'. 1 Jan. 2020 : 107 – 122.
- Comperat, E.M., et al. Grading of Urothelial Carcinoma and The New "World Health Organisation Classification of Tumours of the Urinary System and Male Genital Organs 2016". Eur Urol Focus, 2019. 5: 457.
- Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. Eur Urol. 2016 Jul;70(1):106-119.
- 13. Goebell PJ, Knowles MA. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol Oncol. 2010 Jul-Aug;28(4):409-28.
- Moorthy H K, Prabhu G G, Venugopal P. Clinical and therapeutic implications of sex steroid hormone receptor status in urothelial bladder cancer.Indian J Urol 2020;36:171-178
- 15. Gupta P, Jain M, Kapoor R, Muruganandham K, Srivastava A, Mandhani A. Impact of age and gender on the clinicopathological characteristics of bladder cancer. Indian J Urol2009;25:207-10.
- 16. Tripathi A, Gupta S. Androgen receptor in bladder cancer: A promising therapeutic target. Asian J Urol. 2020;7(3):284-290. doi:10.1016/j.ajur.2020.05.011
- Boorjian S, Ugras S, Mongan NP, Gudas LJ, You X, Tickoo SK, et al. Androgen receptor expression is inversely correlated with pathologic tumor stage in bladder cancer. Urology 2004; 64:383e8.
- Kashiwagi E, Fujita K, Yamaguchi S, Fushimi H, Ide H, Inoue S, et al. Expression of steroid hormone receptors and its prognostic significance in urothelial carcinoma of the upper urinary tract. Canc Biol Ther 2016;17:1188e96.
- 19. Kauffman EC, Robinson BD, Downes MJ, Powell LG, Lee MM, Scherr DS, et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog 2011; 50:931e44.

- 20. Birtle AJ, Freeman A, Munson P. The androgen receptor revisited in urothelial carcinoma. Histopathology 2004;45: 98e9.
- 21. Ide H, Inoue S, Miyamoto H. Histopathological and prognostic significance of the expression of sex hormone receptors in bladder cancer: a meta-analysis of immunohistochemical studies. PloS One 2017;12:e0174746. https://doi.org/10.1371/journal.pone.0174746.
- 22. Elzamy S, Ms AA, Kandeel W. The prognostic significance of androgen receptor and beta-catenin immunohistochemical expression in urothelial carcinoma with and without detrusor muscle invasion from an Egyptian institution. Pol J Pathol 2018;69:234e42.
- 23. Nam JK, Park SW, Lee SD, Chung MK. Prognostic value of sexhormone receptor expression in non-muscle-invasive bladder cancer. Yonsei Med J 2014;55:1214e21.
- 24. Miyamoto H, Yao JL, Chaux A, Zheng Y, Hsu I, Izumi K, et al. Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU Int 2012;109:1716e26.
- 25. Sikic D, Wirtz RM, Wach S, Dyrskjot L, Erben P, Bolenz C, et al. Androgen receptor mRNA expression in urothelial carcinoma of the bladder: a retrospective analysis of two independent cohorts. Transl Oncol 2019;12:661e8.
- 26. Yasui M, Kawahara T, Izumi K, Yao M, Ishiguro Y, Ishiguro H, et al. Androgen receptor mRNA expression is a predictor for recurrence-free survival in non-muscle invasive bladder cancer. BMC Cancer 2019;19:331. https://doi.org/10.1186/s12885-019-5512-9.
- 27. Bergerot PG, Arvinitis L, Dizman N, Salgia M, Pal SK, Jones J. Assessment of the androgen receptor (AR) activity score versus AR expression in muscle invasive bladder cancer (MIBC). J Clin Oncol 2019
- 28. Pachauri A, Pahwa HS, Kumar A. Evaluation of androgen receptor and HER2/neu receptor in tumor tissue of transitional cell carcinoma of urinary bladder and normal bladder mucosa. Arch Int Surg 2017;7:115-20.

- 29. Truta, Anamaria, George Săraci, Tudor-Adrian Hodor-Popon, Liviu Ghervan and Ioan Victor Pop. "Etiopathogenesis of bladder cancer. Risk factors, genetic aspects and novel diagnosis biomarkers." HVM Bioflux 7 (2015): 206-214.
- 30. Plimack ER, Hoffman-Censits JH, Viterbo R, Trabulsi EJ, Ross EA, Greenberg RE, et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J Clin Oncol 2014;32: 1895e901
- 31. Von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Longterm survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 2005;23:4602e8.
- 32. Sternberg CN, de Mulder PH, Schornagel JH, Theodore C, Fossa SD, van Oosterom AT, et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J Clin Oncol 2001;19:2638e46.
- 33. Tripathi A, Plimack ER. Immunotherapy for urothelial carci- noma: current evidence and future directions. Curr Urol Rep 2018;19:109. https://doi.org/10.1007/s11934-018-0851-7.
- 34. Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, et al. Avelumab in metastatic urothelial carci- noma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol 2018;19:51e64.
- 35. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in pa- tients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387:1909e20.

- 36. Powles T, O'Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 2017;3:e172411.
- 37. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017;18:312e22.
- 38. Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin- ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017;18:1483e92.
- 39. Gupta S, Sonpavde G, Grivas P, Apolo AB, Plimack ER,Flaig TW, et al. Defining "platinum-ineligible" patients with metastatic urothelial cancer (mUC). J Clin Oncol 2019; 37(7_suppl):451.
- 40. Rosenberg JE, O'Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol 2019;37: 2592e600.
- 41. Siefker-RadtkeAO,NecchiA,ParkSH,GarcA a-DonasJs, Huddart RA, Burgess EF, et al. First results from the primary analysis population of the phase 2 study of erdafitinib (ERDA; JNJ-42756493) in patients (pts) with metastatic or unresect- able urothelial carcinoma (mUC) and FGFR alterations (FGFRalt). J Clin Oncol 2018;36:4503.
- Martínez-Rojo, E.; Berumen, L.C.; García-Alcocer, G.; Escobar-Cabrera, J. The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021, 11, 594.
- 43. Miyamoto H, Yang Z, Chen YT, Ishiguro H, Uemura H, Kubota Y, et al. Promotion of bladder cancer development and pro- gression by androgen receptor signals. J Natl Cancer Inst 2007; 99:558e68.
- 44. Celayir S, Ilce Z, Dervisoglu S. The sex hormone receptors in the bladder in childhood -I: preliminary report in male sub- jects. Eur J Pediatr Surg 2002;12:312e7.

- 45. Shortliffe LM, Ye Y, Behr B, Wang B. Testosterone changes bladder and kidney structure in juvenile male rats. J Urol 2014;191:1913e9.
- 46. Izumi K, Zheng Y, Hsu JW, Chang C, Miyamoto H. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgeninduced bladder carcinogenesis. Mol Carcinog 2013;52:94e102.
- 47. Kawahara T, Inoue S, Kashiwagi E, Chen J, Ide H, Mizushima T, et al. Enzalutamide as an androgen receptor inhibitor pre- vents urothelial tumorigenesis. Am J Cancer Res 2017;7: 2041e50.
- 48. Kawahara T, Ide H, Kashiwagi E, El-Shishtawy KA, Li Y, Reis LO, et al. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth. Urol Oncol 2016;34:432.e15e25. https://doi.org/10.1016/j.urolonc.2016.05.016.
- 49. Tyagi A, Chandrasekaran B, Kolluru V, Rai S, Jordan AC, Houda A, et al. Combination of androgen receptor inhibitor and cisplatin, an effective treatment strategy for urothelial carcinoma of the bladder. Urol Oncol 2019;37:492e502.
- 50. Huang C, Chen J, Chen C, Liu G, Zhang Y, Messing E, et al. ASC- J9" increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-kB survival sig- nals. J Exp Clin Cancer Res 2019;38:275.
- 51. Gupta S, Dhillon J, Magliocco AM, Puskas J, Caceres G, Masawi F, et al. Results from a phase I/Ib trial of enzalutamide and gemcitabine and cisplatin in metastatic bladder cancer (mBC). J Clin Oncol 2019;37:471.
- 52. Hsu, I., Vitkus, S., Da, J. et al. Role of oestrogen receptors in bladder cancer development. Nat Rev Urol 10, 317–326 (2013).
- 53. Okajima, E., Hiramatsu, T., Iriya, K., Ijuin, M.& Matsushima, S. Effects of sex hormones on development of urinary bladder tumours in rats induced by N-butyl-N-(4hydroxybutyl) nitrosamine. Urol. Res. 3, 73–79 (1975).
- Tanahashi, N. K., Suzawa, N. & Azuma, C. Effects of sex hormones on oncogenesis in rat urinary bladder by N-butyl-N-(4-hydroxybutyl)-nitrosamine. Int. J. Clin. Pharmacol. Biopharm. 15, 101–105 (1977).

- 55. McGrath, M., Michaud, D. S. & De Vivo, I. Hormonal and reproductive factors and the risk of bladder cancer in women. Am. J. Epidemiol. 163, 236–244 (2006).
- 56. Dietrich, K. et al. Parity, early menopause and the incidence of bladder cancer in women:a case-control study and meta-analysis. Eur. J. Cancer 47, 592–599 (2010).
- Bolenz, C., Lotan, Y., Ashfaq, R. & Shariat, S. F. Estrogen and progesterone hormonal receptor expression in urothelial carcinoma of the bladder. Eur. Urol. 56, 1093–1095 (2009).
- Croft,P.R.,Lathrop,S.L.,Feddersen,R.M.& Joste, N. E. Estrogen receptor expression in papillary urothelial carcinoma of the bladder and ovarian transitional cell carcinoma. Arch. Pathol. Lab. Med. 129, 194–199 (2005).
- Miyamoto, H. et al. Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU Int. 109, 1716–1726 (2012).
- 60. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014;90:13-29.
- 61. Tuygun C, Kankaya D, Imamoglu A, Sertcelik A, Zengin K, Oktay M et al (2011) Sex specifc hormone receptors in urothelial carcinomas of the human urinary bladder: a comparative analysis of clinicopathological features and survival outcomes according to receptor expression. Urol Oncol 29:43–51
- 62. Mashhadi R, Pourmand G, Kosari F, Mehrsai A, Salem S, PourmandM Alatab S, Khonsari M, Heydari F, Beladi L, Alizadeh F (2014) Role of steroid hormone receptors in formation and progression of bladder carcinoma: a case control study. Urol Oncol 11(6):1–6
- 63. Mir C, Shariat S, Van der Kwast T et al (2011) Loss of androgen receptor expression is not associated with pathological stage, grade, gender or outcome in bladder cancer: a large multi-institutional study. BJU Int 108:24–30

ANNEXURE-I

Ethical Clearance Certificate

ANNEXURE-II A

CONSENT FORM

_			
	т	•	in

Ι

_____S/O,W/O,D/O_____

____R/O_____

______,Exercising my free power of choice, hereby give my consent to be included as a subject in the study entitled : Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features"

I have been given a full explanation by the study doctor of the nature, purpose and the likely duration of the study and what I will be expected to do and I have been advised any foreseeable risk associated with the procedure. This has been explained to me in the language I best understand.

I agree to cooperate fully with the supervising doctor and to inform him/her immediately if Isuffer from any unusual symptoms during the study period. I am also aware of my right to opt out at any stage of the trial during the course of study and my usual treatment will be continue. I understand that medical records that reveal my identity will be kept confidential.

Name of the patient:

Name of supervising doctor

Signature:

Dr. Nikita Shrivastava

Name of accompanying relative:

Signature:

<u>ANNEXURE-II B</u> <u>सहमतिपत्र</u>

ਸੱ	पत्नी/बेटी/पति/बेटा	
िनिवासी		
अपनी इ	इच्छा अनुसार Androgen and estroge	en receptor expression in
carcinoma urinary bladder and	relationship with clinicopatholog	gic features" नामकशोध
अध्ययन में एक अध्ययन विषय वे	के रूप में शामिल होने के लिए अपनी	पूर्ण स्वतंत्र और स्वैच्छिक
सहमति देता / देती हूँ । मुझे पूर्ण	संतुष्टि अनुसार इयूटी पे तैनात चि	केत्सक द्वारा अध्ययन के
उद्देश्य के बारे मैं स्पष्ट स्पष्ट बता	। दिया गया हैं। मुझे बता दिया गया ह	हैं की इस शोधकार्य में मेरी
भागीदारी पूरी तरह स्वैछिक है और	में किसी भी दण्ड के भय के बिना और	ऐसा करने के मेरे कारण को
दिए बिना किसी भी समय इस अ	ध्ययन से अपनी भागीदारी समाप्त व	करने के लिए चुन सकता /
सकती हूँ। मैं इस शोध कार्य मैं भाव	ग लेने के लिए किसी भी मौद्रिकयावित	त्तीय या मुआवज़े के किसी
अन्यरूप का दावा नहीं करूंगा / व	करुंगी । मैं समझती हूँ की मेरी बिम	गरी की जानकारी एवं उस
सेसम्बंधित सभी वस्तुएं गोपनीय र	खी जाएँगी लेकिन रोगी की गोपनीयता	अनुसंधानकाविशेय है और
अन्य स्वास्थ्य सेवा प्रदाताओं की रह	क्षा हेतु इसे तोड़ा जा सकता है।	
मैं अपने हस्ताक्षर द्वारा इसशोध क	ार्य मैं पूरा सहयोग एवं बिमारी से सम्बं	धित जानकारी डॉक्टर के
साथ बाटने का वादा करता / करती ह	ξI	
मरीज़ का नामः		मरीज़के हस्ताक्षर
तिथि :		
पर्यवेक्षकः डॉ। निकिता श्रीवास्तव		
यूरोलॉजी विभाग, एम्स जोधपुर		
तिथि :	गवाह 1 का नाम :	गवाह 1 के हस्ताक्षर

<u>ANNEXURE-III A</u> <u>PATIENT INFORMATION FORM</u>

Patient Identification Number for this research project:

Title : Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features"

Student: Dr. NIKITA SHRIVASTAVASupervisor: Dr. GAUTAM RAM CHOUDHARY
Associate Professor

Department of Urology, AIIMS Jodhpur

You are being invited to participate in this research to assess: "Androgen receptor and estrogen receptor expression in carcinoma urinary bladder and correlation with clinicopathologic features"

PURPOSE OF RESEARCH: Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features"

EXPECTED DURATION OF PARTICIPATION: Patient's follow up will be divided in to : 1) short duration follow up (due to restricted study duration) and 2) long duration follow up till death of patient or lost to follow up.

FORESEEABLE RISKS BY PARTICIPATING IN THE STUDY: Patient will undergo normal treatment protocol ,investigations and surgeries risks will be involved but there is no extra risk due to participation in this study.

BENEFITS BY PARTICIPATING IN THE STUDY: No direct benefit would be there as far as the present study is concerned. However, it may beneficial to the society and the other people if this study will able to help in modifying the management of patients.

ALTERNATIVES TO PARTICIPATION: None, as this is an observational study.

CONFIDENTIALITY: All the information that you or your patient provides during the study will be kept confidential on a password protected computer. Information collected about the patient from his/her participation in this research and sections of any of his/her medical notes will not be used for any other purpose but it may be looked at by responsible individuals.

COST OF PARTICIPATION: No additional cost to you for participating in this study.

PAYMENT FOR PARTICIPATION: No incentives to you for participating in this study.

In the event that at any time during the course of the study you/your patient feels that you/they have not been adequately informed as to the possible risks, benefits, alternative procedures, or rights as a study subject or feel under pressure to continue against your wish you can contact:

principal investigator :

Dr. NIKITA SHRIVASTAVA	Dr. GAUTAM RAM CHOUDHARY
Department of Urology,	Associate Professor,
AIIMS Jodhpur, 342005	Department of Urology,
Tel: 7225839193	AIIMS Jodhpur, 342005

LEGAL RIGHTS: By signing this form, we are not violating any of your legal rights. The patient or patient's relative will be notified in a timely manner if significant new findings develop during the course of the research which may affect the subject's willingness to continue participation.

Date:

Place:

Signature/left thumb impression of the patient:

Patient's name:

Signature of principal investigator: Date:

ANNEXURE-III B

रोगी सूचना पत्र

इस शोध परियोजना के लिए रोगी पहचान संख्याः

शीर्षक Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features"

छात्र: डॉ। निकिता श्रीवास्तव

पर्यवेक्षक: डॉ गौतम राम चौधरी

सह - प्राध्यापक

यूरोलॉजी विभाग, एम्स जोधपुर

मूल्यांकन के लिए आपको इस शोध में भाग लेने के लिए आमंत्रित किया जा रहा है:

Androgen and estrogen receptor expression in carcinoma urinary bladder and relationship with clinicopathologic features"

भागीदारी की अपेक्षित अवधिः रोगी का अनुवर्ती भाग इस प्रकार विभाजित किया जाएगाः

1) छोटी अवधि अन्वर्ती (प्रतिबंधितअध्ययनअवधिकेकारण) और

2) लंबे समय तक रोगी की मौत तक फॉलोअप या फॉलोअप के लिए खो दिया।

अध्ययन में भाग लेने के लिए जोखिम : आपके इलाज में होने वाले जोखिम से इस जांच का कोई नाता नहीं है. इसमें किसी भी प्रकार का अलग से जोखिम नहीं है .

अध्ययन में भाग लेने से लाभःवर्तमान अध्ययन के संबंध में कोई प्रत्यक्ष लाभ नहीं होगा । हालांकि, यह समाज और अन्य लोगों के लिए फायदे मंद हो सकता है य दियां ह अध्ययन रोगियों के प्रबंधनमें संशोधन करने में मदद करेगा।

समूह आवंटन:कोई नहीं

साझेदारी के लिए विकल्प:कोई नहीं, क्योंकि यह एक अवलोकन अध्ययन है।

गोपनीयता:अध्ययन के दौरान आप या आप के रोगी द्वारा प्रदान की जाने वाली सभी जानकारी को पास वर्ड संरक्षित कंप्यूटर पर गोपनीय रखा जाएगा ।इस शोध में रोगी के बारे में एकत्रित जानकारी और उसके किसी भी चिकित्सा नोट के अनुभागों का उपयोग किसी भी अन्य उद्देश्य के लिए नहीं किया जाएगा, लेकिन इसे जिम्मेदार व्यक्तियों द्वारा देखा जा सकता है।

साझेदारी की लागत:इस अध्ययन में भाग लेने के लिए आपके लिए कोई अतिरिक्त लागत नहीं है। भागीदारी के लिए भुगतान: इस अध्ययन में भाग लेने के लिए आपके लिए कोई प्रोत्साहन नहीं। यदि किसी भी समय अध्ययन के दौरान आप / आप के रोगी को लगता है कि आपको संभावित जोखिम, लाभ, वैकल्पिक प्रक्रियाओ या अध्ययन विषय के रूप में अधिकारों के रूप में पर्याप्त रूप से सूचित नहीं किया गया है या जारी रखने के दबाव में महसूस नही किया गया है आपकी इच्छा के विरुद्ध आप संपर्क कर सकतेहैं।

डॉ। निकिता श्रीवास्तव यूरोलॉजी विभाग, एम्स जोधपुर, 342005 दूरभाष: 7225839193 342005

डॉ गौतम राम चौधरी एसोसिएट प्रोफेसर, यूरोलॉजी विभाग, एम्सजोधपुर,

कानूनी अधिकार :इस फॉर्म प रहस्ताक्षर करके, हम आपके किसी भी कानूनी अधिकार का उल्लंघन नहीं कर रहे हैं।
रोगी या रोगी के रिश्तेदार को समय-समय पर अधिसूचित किया जाएगा यदि अनुसंधान के दौरान महत्वपूर्ण नए निष्कर्ष विकसित होते हैं जोकि विषय जारी रखने की इच्छा को प्रभावित कर सकते हैं। दिनांक:

जगहः

रोगीकेहस्ताक्षर / बाएंअंगूठेकीछापः _____

मरीज का नाम:_____

प्रिंसिपल अन्वेषक का हस्ताक्षर:

दिनांक:

सह-जांचकर्ता का हस्ताक्षरः

दिनांक:

ANNEXURE-IV

PROFORMA

Name:

Age: Sex:

CR Number:

Address with phone number:

addiction:

Comorbidity:

Chief complaints and duration:

General and systemic examination:

Date of admission:

Date of surgery:

Radiological findings:

USG KUB :

CT UROGRAPHY:

MR urography:

Surgery details:

D) Perioperative parameters(for prospective cases only):

1. complications (if any)

- 2. degree of haematuria post surgery
- 3. length of hospital stay

histopathologic report:

Tumor type

Tumor stage

Tumor grade

Immunohistochemical assay

Androgen receptor

Estrogen receptor alpha

Estrogen receptor beta

ANNEXURE V MASTERCHART

	Age	Gender	Histologic stage and grade	Pathological type	Size of mass						ER alpha	ER beta	AR
AIIMS/JDH/2019/03/011804	49	F	T1G3	Urothelial	Size in cm 2	Focality -	Metastases at presentation No	Surgery done TURBT	complications None	length of hospital stay post surgery 2 days	positive/negative N	positive/negative p	ositive/negative P
AIIMS/JDH/2020/01/029056 AIIMS/JDH/2019/12/006933	60 62 72	M	T1G3 T1G1	Urothelial	3.5 5.4	- Multifocal	No No	TUR biopsy TUR biopsy	None None	2 days 1 day	N N	N N	P P
AliMS/JDH/2020/03/03/03/03/03/02/03/03/02/02/02/02/02/02/02/02/02/02/02/02/02/	73	M	<u>T1G3</u> TaG1	Chondrosarcomatous Urothelial	5.2	-	No	TURBT	None	2 days 2 days 1 day	N N	N P	P
AIIMS/JDH/2019/09/019641 AIIMS/JDH/2020/10/009512	40 60	M	<u>T1G3</u> T2	Urothelial Urothelial	2.5 4.5	-	No No	TURBT TURBT	None	1 day 2 days	N N	P P	P
AIIMS/JDH/2019/06/010274 AIIMS/JDH/2020/01/021310	39 43	M	T2 TaG3	Urothelial Urothelial	1.3 3.1	- Multifocal	No No	TURBT TURBT	None Hematuria	2 days 2 days	N N	P P	P
AIIMS/JDH/2021/02/000196 AIIMS/JDH/2021/02/002667	66 49	M	T3b TaG1	Urothelial Urothelial	6	Multifocal -	Yes No	Palliative cystectomy TURBT	None None	10 days 1 day	N N	N	P
AIIMS/JDH/2019/03/015938 AIIMS/JDH/2021/01/017187 AIIMS/JDH/2016/06/013809	44 56 69	M	T2 T1G3	Squamous	5	-	No No	TURBT	None None	9 days 1 day 1 day	N N	N N	P P
AIIMS/JDH/2018/11/015362 AIIMS/JDH/2019/07/021743	80 57	M	TaG1 T2	Urothelial Urothelial	16 4.8	- Multifocal	No	TURBT RC with IC	None Left lower limb DVT postop	2 days 9 days	N	P	P
AIIMS/JDH/2019/06/017207 AIIMS/JDH/2020/10/000461	48 77	M M	<u>T1G3</u> T1G1	Urothelial Squamous	2.3 3	-	No No	RC with IC TURBT	None None	10 days 2 days	N N	N P	P
AIIMS/JDH/2020/10/001933 AIIMS/JDH/2020/09/008379	78 65	M	T2 <u>T1G3</u>	Urothelial Squamous	4.3	-	No No	TURBT TURBT	None None	2 days 2 days	N N	N P	P N
AIIMS/JDH/2020/10/006335 AIIMS/JDH/2020/02/003852 AIIMS/JDH/2021/01/017387	70	M	<u>T1G3</u> T4a	Urothelial	3.8	- Multifocal Multifocal	Yes	TURBT BC with IC	None None Hypotension	2 days 2 days 11 days	N N	P N N	P P
AIIMS/JDH/2015/03/007563 AIIMS/JDH/2019/06/004232	58	M	<u>T1G3</u> <u>T1G3</u>	Urothelial Urothelial	6.2	- Multifocal	No	TURBT RC with IC	None	2 days 6 days	N	N	P
AIIMS/JDH/2021/05/000106 AIIMS/JDH/2021/07/000957	65 51	M M	T2 TaG1	Small round blue cell tumor Urothelial	5.6 3	-	No No	TUR biopsy TURBT	iatrogenic urinary bladder perforation none	4 days 2 days	N N	P P	P P
AIIMS/JDH/2021/02/006913 AIIMS/JDH/2019/11/009501	56 101	M	T1G3 T2	Urothelial Urothelial	1.7 5.6	Multifocal	No No	TURBT TUR biopsy	NONE none	2 DAYS 3 days	N	N	P
AIIMS/JDH/2021/02/009/06 AIIMS/JDH/2021/03/001845 AIIMS/ JDH/2021/02/000196	71 75 66	M	TaG1	Urothelial	5.5	Multifocal	No No	TURBT TURBT	none	3 days 3 days	N	P	P P
AIIMS/JDH/2017/03/013040 AIIMS/JDH/2020/12/007962	60 71	M	T2 T2	Squamous Urothelial	7.5	Multifocal	No	TUR biopsy TURBT	HEMATURIA AKI	5 DAYS 5 DAYS	N P	P	P
AIIMS/JDH/2021/04/008747 AIIMS/JDH/2021/04/012052	53 53	M F	<u>T1G3</u> <u>T1G3</u>	Urothelial Urothelial	7.5 3.3	- Multifocal	No Yes	TUR biopsy TUR biopsy	none	1 DAY 2 days	N P	N P	P P
AIIMS/JDH/2021/05/008020 AIIMS/JDH/2021/07/012811	55 55	M	TaG1 T1G1	Urothelial	9 3.2	Multifocal	No	TUR biopsy TURBT	none	5 days 4 days	N P	P	P
AIIMS/JDH/2019/12/001224 AIIMS/JDH/2019/01/026053 AIIMS/ IDH/2019/12/006933	64 42 62	M	T2 T1G1 TaG1	Urothelial Urothelial	4 2.9	- - Multifocal	No No	TURBT TURBT BC with peobladder	HEMATURIA iatrogenic urinary bladder perforation	2 days 2 days	N	P N	P P
AIIMS/JDH/2019/12/008098 AIIMS/JDH/2019/08/012542	84 60	M	<u>T1G3</u> T1G1	Urothelial	1.3 7.4	- Multifocal	No	TURBT RC with IC	none Respiratory complications	2 days Death	N	P	P N
AIIMS/JDH/2017/04/011083 AIIMS/JDH/2021/07/016626	71 55	M	<u>T1G3</u> T2	Urothelial Urothelial	3.2 6.2	Multifocal Multifocal	No Yes	RC with IC TURBT	abdominal ileus None	8 days 2 days	N P	N	P N
AIIMS/JDH/2019/04/013157Narayan Das AIIMS/JDH/2021/10/004304	58 65	M	T1G3 T1G3	Urothelial Plasmacytoid	1.4 2	-	No	TURBT TURBT	None None	2 days 2 days	N N	N P	N P
AIIMS/JDH/2015/07/011927 AIIMS/JDH/2017/12/006059 AIIMS/ JDH/2017/12/006059	64 80	M	T2 T1G3	Urothelial Squamous	3	- Multifocal	No No	TURBT TUR biopsy	None None	2 days 2 days	N N	N N	P
AlimS/JDH/2019/04/010164multan HamH/30/2 /2019 AlimS/JDH/2017/03/013040 AlimS/JDH/2018/12/011563	70 60 70	M	T2 T1G3	Squamous	6.5	Multifocal Multifocal	No No	Palliative cystectomy	None None	5 days 2 days	N N	P P	N N N
AIIMS/JDH/2020/05/001270	33	F	T2 T1G3	Urothelial Squamous	3.5	-	No	TURBT TUR biopsy	None	2 days 3 days	N	P	P
AIIMS/JDH/2021/07/013104 AIIMS/JDH/2021/08/002648	69 70	M M	T1G3 T1G3	Urothelial Urothelial	4 3.2	-	No No	TURBT TURBT	None None	1 day 2 days	P N	P P	P P
AIIMS/JDH/2021/08/017362 AIIMS/JDH/2021/09/005200	63 44	M	TaG1 T1G3	Urothelial Urothelial	3 7.5	- Multifocal	No No	TURBT TURBT	None None	2 days 3 days	N	P N	P N
AIIMS/JDH/2021/10/006545 AIIMS/JDH/2021/07/013203 AIIMS/ JDH/2020/08/007077	63 80 70	M	T2 TaG1 T2	Urothelial Urothelial	4 0.5	- - Multifocal	No No	TURBT TURBT BC with IC	None None	2 days 3 days	N N	N N P	N N
AIIMS/JDH/2021/08/014214 AIIMS/JDH/2019/01/031600	44	M	T3b T1G3	Urothelial Urothelial	6.5	Multifocal	No	RC with IC	Wound dehiscence None	1 month 1 day	N	P	N
AIIMS/JDH/2019/04/014329 AIIMS/JDH/2019/04/000684	58 80	M	TaG1 T2	Urothelial Adenocarcinoma	1.2 3.2	Multifocal Multifocal	No No	Restage TURBT TUR biopsy	None None	3 days 4 days	N N	N N	P N
AIIMS/JDH/2019/04/018980 AIIMS/JDH/2019/07/008711	49 71	M	T2 T3b	Squamous Squamous	6	Multifocal	No No	RC with IC	None fever	3 days Death	N N	N	N
AIIMS/JDH/2014/06/004285 AIIMS/JDH/2019/09/015451	76	M	T1G3 TaG1	Urothelial	4	-	No	TURBT TURBT	None	3 days 1 day	N N N	N	P
AIIMS/JDH/2019/09/016171 AIIMS/JDH/2019/06/008703	59 69	M M	T1G3 T1G3	Adenocarcinoma Urothelial	6 6	-	No No	TURBT TURBT	None None	2 days 2 days	N N	N	N N
AIIMS/JDH/2019/11/014293 AIIMS/JDH/2019/11/017076	90 54	M	T2 T1G1	Urothelial	5	-	No No	TURBT TURBT	HEMATURIA None	10 days 1 day	N N	P P	P
AIIMS/JDH/2021/01/013166 AIIMS/JDH/2017/06/002991 AIIMS/JDH/2019/04/004384	60 83 57	M	12 T1G1	Urothelial	3	Multifocal	No No	TURBT TURBT BC with IC	None None	2 days 2 days 8 days	N	P	N N
AIIMS/JDH/2018/11/002166 AIIMS/JDH/2016/08/010860	49 67	M	TaG1 TaG1	Urothelial Urothelial	1.5	Multifocal	No	TURBT TURBT	None	5 days 1 day	N	P	P
AIIMS/JDH/2018/10/014191 AIIMS/JDH/2020/12/007314	60 60	M M	T1G1 <u>T2</u>	Urothelial Urothelial	5.5 6.5	Multifocal Multifocal	No No	TUR biopsy RC with IC	None None	4 days 13 days	N N	N N	P N
AIIMS/JDH/2021/10/014174 AIIMS/JDH/2021/07/002027	60 68	M	TaG1 T1G3	Urothelial Squamous	1.8 6	Multifocal -	No No	TURBT TURBT	None Bladder perforation	2 days 4 days	N N	P	P
AIIMS/JDH/2021/108/000523 AIIMS/JDH/2021/10/008047 AIIMS/JDH/2017/01/015256	38	F M	T2 T2 T2	Urothelial	5	- Multifocal	No	TURBT	None None	9 days 4 days 2 days	N	P N N	P P N
AIIMS/JDH/2018/11/003755 AIIMS/JDH/2017/10/009428	49 62	M	TIG3 TIG3	Urothelial	10 3.5	multifocal	No	RC with IC TURBT	None	8 days 3 days	N N	P P	P P
AIIMS/JDH/2018/02/005301 AIIMS/JDH/2018/10/014234Moda Ram	65 76	F	TIG3 T2	Urothelial adenocarcinoma	2.8 4.3	-	No No	TURBT TURBT	None None	3 days 2 days	N N	P N	P P
AIIMS/JDH/2017/06/009487 AIIMS/JDH/2017/09/009140	55 78	M	TIG1 TIG3	Urothelial	8.5	multifocal multifocal	No YES	TURBT	None None	11 days 2 days	N	P	P P
AllMS/JDH/2017/11/005522 AllMS/JDH/2017/12/013408	55	M	TaG1 T2	Urothelial	2.2	-	No	TURBT	None	3 days 2 days	N N	P N	N
AIIMS/JDH/2018/11/000305 AIIMS/JDH/2018/09/004422Ghanshyam Barasa	49 67	M M	T2 T2	adenocarcinoma squamous	1 3.5	- in bladder diverticulum	No No	random bladder biopsies RC with IC	None None	3 days 9 days	N N	P P	N P
AIIMS/JDH/2018/09/006482 AIIMS/JDH/2016/06/008840	40 44	M F	TIG3 T2	sarcomatoid	3.8 9	- multifocal	No	TURBT RC with IC	None None	1 day 10 days	N	N	P N
AIIMS/JDH/2018/03/007273Bhata Ram AIIMS/JDH/2018/03/012681 AIIMS/ JDH/2017/09/015038	67 58 66	F M	T1G1 TIG3 T1G1	Urothelial Urothelial	3.6 5.5	-	No No	TURBT TURBT	None None	2 days 1 day	N	P	P P
AIIMS/JDH/2017/11/004110 AIIMS/JDH/2016/12/002686	69 59	M	TIG3 T2	Urothelial Urothelial	2.2	-	No	TURBT	None	2 days 1 day	N	P	N
AIIMS/JDH/2018/08/004355 AIIMS/JDH/2017/11/006537	67 48	M M	TaG3 T2	Urothelial squamous	6 5.5	multifocal -	No No	TUR biopsy TURBT	None None	1 day 2 days	N N	N N	P N
AIIMS/JDH/2017/06/009577Karamai AIIMS/JDH/2015/07/005150Badrinarayan Joshi	49 72	F M	T2 TaG3	Urothelial Urothelial	6	-	No No	TURBT TURBT	None None	2 days 2 days	N N	P	N N
AIIMS/JDH/2018/10/002005 AIIMS/JDH/2021/12/011465 AIIMS/JDH/2021/08/003650	61	M	T1G1 T1G1 TaG3	Urothelial	3	- multifocal multifocal	No No	TURBT	None None	2 days 2 days 2 days	N	P P P	P
AIIMS/JDH/2021/09/012673 AIIMS/JDH/2021/12/002923	65 54	M	TaG1 TaG1	Urothelial	2.5	=	No	TURBT	None None	3 days 3 days	N N	P P	P P
AIIMS/JDH/2021/12/005785 AIIMS/JDH/2021/10/012172	61 65	M	TaG1 T2	Urothelial Urothelial	3	-	No	TURBT	None cardiac arrest	2 days Death	N N	P P	P P
AIIMS/JDH/2020/09/009447 AIIMS/JDH/2015/08/006507	44	F M	T1G1 T2	Urothelial	9	-	No No	TURBT TUR biopsy	None NONE	2 days 2 DAYS	N N	P N	P
AIIWS/JDH/2016/06/000048 AIIMS/JDH/2018/08/008013 AIIMS/JDH/2021/08/001933	59 65 70	F M M	1aG1 TaG1 T2	Urothelial Urothelial	4	-	No No	TURBT TURBT TURBT	None None	2 days 2 days 2 days	N N N	P N	P N
AIIMS/JDH/2019/06/000842 AIIMS/JDH/2018/03/016231	79	M	TaG1 	Urothelial	2	-	No No	TURBT	None None	3 days 3 days	N N	P	P
AIIMS/JDH/2019/06/011489 AIIMS/JDH/2019/07/007596	67 73	M	T1G3 TaG1	Squamous Urothelial	4.5	Multifocal	No No	TUR biopsy TURBT	None None	2 days 2 days	N N	N P	N P
AIIMS/JDH/2019/10/002555 AIIMS/JDH/2018/07/005998 AIMS/ (DH/2018/07/005998	68	M	T1G3 T3b	Urothelial	4	- Multifocal	No No	TURBT RC with IC	None fever	5 days Death	N	P	N N
AllMS/JDH/2018/05/016706 AllMS/JDH/2018/05/016706 AllMS/JDH/2019/01/032091	51 62 66	M M M	12 TaG1 TaG1	Urothelial Urothelial Urothelial	/ 2.2 3	- Multifocal Multifocal	No No	TURBT	None Hematuria	1 day 4 days 4 days	N N N	P P	P N
AIIMS/JDH/2019/04/010187 AIIMS/JDH/2019/09/009220	49	M	T1G3 TaG1	Siguamous	5.5	Multifocal Multifocal	No	TURBT	None None	4 days 1 day	N	N N	N P