TO STUDY THE EFFECTS OF MATERNAL HYPERTENSION ON THE NEONATAL UMBILICAL CORD HEMOGRAM

THESIS

SUBMITTED TO

ALL INDIA INSTITUTE OF MEDICAL SCIENCES, JODHPUR

In partial fulfillment of the requirement for the degree of

DOCTOR OF MEDICINE (MD)

(OBSTETRICS & GYNAECOLOGY)

JULY, 2020

AIIMS, JODHPUR

DR. CHAITHRA B V

(DECLARATION BY THE CANDIDATE) DECLARATION

I hereby declare that the thesis titled "To study the Effects of maternal hypertension on the neonatal umbilical cord hemogram

embodies the original work carried out by the undersigned in All India Institute of Medical Sciences, Jodhpur.

Obreth Dr. Chaithra B V

Department of Obstetrics and Gynaecology All India Institute of Medical Sciences, Jodhpur, (Rajasthan)

ALL INDIA INSTITUTE OF MEDICAL SCIENCES, JODHPUR

CERTIFICATE

This is to certify that the thesis titled "To study the Effects of maternal hypertension on the neonatal umbilical cord hemogram

is the bonafide work of Dr. Chaithra B V, in the Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Jodhpur.

> Dr. Pratibha Singh Professor and Head Department of Obstetrics and Gynaecology All India Institute of Medical Sciences, Jodhpur

ALL INDIA INSTITUTE OF MEDICAL SCIENCES, JODHPUR CERTIFICATE

This is to certify that the thesis titled "To study the Effects of maternal hypertension on the neonatal umbilical cord hemogram

is the bonafide work of **Dr. Chaithra B V** carried out under our guidance and supervision, in the Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Jodhpur.

GUIDE

Dr. Prationa Singh Professor and Head Department of Obstetrics and Gynaecology All India Institute of Medical Sciences, Jodhpur

CO-GUIDES

Dr. Garima Yadav Additional Professor Department of Obstetrics and Gynecology AIIMS, Jodhpur

Dr. Neeraj Gupta Additional Professor Department of Neonatology AIIMS, Jodhpur

Dr. Manu Goyal Additional Professor Department of Obstetrics and Gynecology AIIMS Jodhpur

Dr. Priyanka Kathuria Associate Professor Department of Obstetrics and Gynecology AIIMS Jodhpur

Dedicated to

My Father, Venkateshappa

And

My Mother, Sarojamma

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to my guide, a great teacher and above all a great human being **Dr. Pratibha Singh** Professor & Head of Department, Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Jodhpur. Words fall short to describe the amount of encouragement and positivity you instilled in me. I feel blessed to be guided under you. Your constant support and orientation to every kind of academic activities made me confident enough to carry out my thesis work and enabled me to complete it. I am forever indebted to you.

I owe my special thanks to **Dr. Pratibha Singh**, Professor and Head of Department, Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Jodhpur. You have been an inspiration to me throughout my course and continue to do so. Thank you for all the encouragement, guidance and moral support to carry out the thesis under you.

I would also like to express my sincere gratitude to **Dr. Garima Yadav**, Additional Professor, Department of Obstetrics and Gynecology, **Dr Manu Goyal**, Additional professor, Department of Obstetrics & Gynecology, **Dr Priyanka Kathuria**, Associate professor, department of Obstetrics & Gynecology, Thank you for all the encouragement, guidance and moral support throughout the course.

I would also like to express my sincere gratitude to **Dr. Neeraj Gupta**, for not only their insightful comments and encouragement, but also for the hard questions which incented me to widen my research from various perspectives.

I would also like to express my gratitude to, Associate Professor Department of Community and Family Medicine for helping me out with the sample size calculation and statistical analysis.

All the faculties of the Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Jodhpur have been pillars of support and understanding and this would not have been possible without them. I am beholden to my colleagues Dr .Neha, Dr. Shreya, Dr. Pratibha and Dr. Matte for the constant motivation and support. I would also like to acknowledge my seniors and juniors especially Dr. Aashim, Dr Suman, Dr Danaram, Dr Harshita who have helped me in my thesis.

I must express my very profound gratitude to my father Venkateshappa and my mother Sarojamma and my younger brother Gopi & my husband Dr Shridhar Shellikeri for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

I am highly obliged to all the participants of my study for their patience and co-operation and their contribution to this thesis.

Finally, my thanks goes to all the people who have supported me to complete the research work directly or indirectly.

Dr. Chaithra B V

Department of Obstetrics and Gynecology All India Institute of Medical Sciences Jodhpur

INDEX

S. NO.	S. NO. CONTENTS		
1	LIST OF ABBREVIATIONS	:	ix
2	LIST OF TABLES	:	X
3	LIST OF FIGURES	:	xi
4	SUMMARY	:	xii-xiii
5	INTRODUCTION	:	1-10
6	AIM AND OBJECTIVES	:	11
7	REVIEW OF LITERATURE	:	12-18
8	MATERIALS AND METHODS	:	19-22
9	OBSERVATIONS AND RESULTS	:	23-63
10	DISCUSSION	:	37-55
11	STRENGTH AND LIMITATIONS OF THE	:	56
	STUDY		
12	CONCLUSION	:	57-58
13	BIBLIOGRAPHY	:	59-63
14	ANNEXURES		
	Case Record Form		64-66
	Informed Consent Form (English)		67
	Informed Consent Form (Hindi)		68
	Patient Information Sheet (English)		69
	Patient Information Sheet (Hindi)		70
	Master chart		

LIST OF ABBREVIATIONS

Short Form	Full Form
РІН	PREGNANCY INDUCED HYPERTENSION
RDW	RED CELL DISTRIBUTION WIDTH
НСТ	HEMATOCRIT
PDW	PLATELET DISTRIBUTION WIDTH
TLC	TOTAL LEUCOCYTE COUNT
МСН	MEAN CORPUSCULAR HEMOGLOBIN
МСНС	MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION
TTNB	TRANSIENT TACHYPNOEA OF NEWBORN
SBP	SYSTOLIC BLOOD PRESSURE
DBP	DIASTOLIC BLOOD PRESSURE
К5	KOROTKOFF SOUND 5
ACOG	AMERICAN COLLEGE OF OBSTETRICS & GYNAECOLOGY

Table		Page
No.	Title of table	
1	Demographic details of hypertensive & normotensive group	24
2	Comparision in locality between hypertensive & normotensive group	
3	Comparision of gravidity between hypertensive & normotensive group	
4	Gestational age comparision between hypertensive & normotensive group	26
4	Spectrum of hypertensive disorders of pregnancy	27
5	Comparision of hematological parameters in spectrum of hypertensive disorders of pregnancy	28
6	Comparisison of NICU admissions between between newborns of hypertensive group & normotensive group	29
7	Comparision of neonatal complications between hypertensive & normotensive group	
8	Comparision of hematological parameters between mother of hypertensive & normotensive groups	31
8A	Comparision of hematological parameters between umbilical cord blood of hypertensive & normotensive groups	33
9	Comparision of hemoglobin of mother between hypertensive & normotensive groups	34
10	Comparision of hematocrit of mother between hypertensive & normotensive groups	37
11	Comparision of platelets of mother between hypertensive & normotensive groups	38
12	Comparision of MCH of mother between hypertensive & normotensive groups	39
13	Comparision of MCHC of mother between hypertensive & normotensive groups	40
14	Comparision of RDW of mother between hypertensive &	42

LIST OF TABLES

	normotensive groups	
15	Comparision of PDW of mother between hypertensive & normotensive groups	43
16	Comparision of TLC of mother between hypertensive & normotensive groups	43
16.A	Comparision of netrophils of mother between hypertensive & normotensive groups	
17	Comparision of hemoglobin of cord blood between hypertensive & normotensive groups	45
18	Comparision of hematocrit of cord blood between hypertensive & normotensive groups	46
19	Comparision of MCH of cord blood between hypertensive & normotensive groups	48
20	Comparision of MCHC of cord blood between hypertensive & normotensive groups	49
21	Comparision of RDW of cord blood between hypertensive & normotensive groups	50
22	Comparision of TLC of cord blood between hypertensive & normotensive groups	51
23	Comparision of nuutrophils of cord blood between hypertensive & normotensive groups	52
24	Comparision of platelets of cord blood between hypertensive & normotensive groups	
25	Comparision of PDW of cord blood between hypertensive & normotensive groups	54

Figure No.	Title of figure		Page No.
1	Work flow diagram	:	20
2	BP apparatus	:	21
3	5ml blood collected in EDTA vial	:	22
4	Mindray BC- 6200 automatic hematology analyser	:	22

LIST OF FIGURES

SUMMARY OF THE PROJECT

Background : The elevation of blood pressure associated with pregnancy is a health problem known as pregnancy induced hypertension (PIH).

In this study, we compared hematological profile of mothers of hypertensive disorders of pregnancy and umbilical cord blood samples to that measured in normotensive pregnants. In addition, possible correlations of hematological parameters between hypertensive mothers and umbilical cord blood was also examined.

Objective :

Primary objective:

- To compare the hematological parameters (hemoglobin , hematocrit, platelets , MCH, MCHC , RDW, PDW , platelests, TLC, neutrophils) of hypertensive mothers and their umbilical cord blood to normotensive pregnant women
- Secondary objective:
- To find out incidence of polycythemia, neonatal jaundice and need for phototherapy in babies of hypertensive and normotensive pregnant women
- To find and compare hematological parameters in gestational hypertension, pre-ecclampsia and ecclampsia

Methods:

This was a prospective cohort study conducted at department of Obstetrics & Gynecology and Neonatology at AIIMS Jodhpur for a period of 2 years. Pregnant women coming to Labour room with hyertension was included. Hypertension in pregnant women was diagnosed according to departmental protocol/ ACOG criteria [which includes- systolic BP of >140 mm Hg and diastolic BP of >90 mm Hg on atleast two readings taken 4 hours apart after 20 weeks of gestation As a control group healthy normotensive pregnant women was included.

Results : Our study shows that 48.3% were primigravida & 51.67 % were multigravida in hypertensive group, and 43.3 % were primigravida & 56.67 % were , multigravida in normotensive group, shows that 56.67 % were preterm deliveries &

43.33% were term deliveries in hypertensive group, and in normotensive group 25% were preterm deliveries & shows that out of 60 hypertensive patients 32.5 % were gestational hypertension, 0.83% were partial HELLP, 10.83 % were preeclampsia with severe features, 5.83% were pre-eclampsia without severe features, Mean total leucocyte count level (12217.5±3482.73) was significantly higher in hypertensive group than that of normotensive group (10861.83 ± 3406.02) (p<0.033), Mean hemoglobin level (16.11±3.29) was significantly higher in umbilical cord blood of hypertensive group than that of normotensive group (14.44 ± 2.59) (p0.002) Mean platelet count (2.32±0.91) was significantly lower in umbilical cord blood of hypertensive group than that of normotensive group (2.69 ± 0.58) (p 0.009), Mean PDW level (14.07±3.39) was significantly higher in umbilical cord blood of hypertensive group than that of normotensive group (12.7 ± 1.48) (p 0.004), Mean neutrophil count (6588.63±3025.6) was significantly lower in umbilical cord blood of hypertensive group than that of normotensive group (9181.67±1732.25) (p <0.0001), mean RDW levels (32.92±1.31, 32.98±1.87, 32.03±1.54, 34±0.00,) in spectrum of hypertensive disorders of pregnancy (gestational hypertension, PE without severe features, PE with severe feature, partial HELLP) (p value =0.314) is not correlating with severity of hypertension in pregnancy, rate of prematurity 26.67 % in newborns of hypertensive group than that of normotensive group (11.67%), need of phototherapy in newborns of hypertensive group (35%), than that of normotensive group (18%) (rate is higher in normotensive group also as might be due to dehydration in baby by inefficient feeding practices), the rate of NICU admissions in newborns of hypertensive group (25%)higher than that of normotensive group (1.67%) (p=0.0002), due to higher prematurity rates in hypertensive group.

Conclusion : the mean total leucocyte count higher in mothers of hypertensive group, mean hemoglobin & mean PDW higher in umbilical cord blood of hypertensive group, mean platelets & mean neutrophils lower in umbilical cord blood of hypertensive group.

The rates of prematurity & NICU admissions are higher in newborns of hypertensive group, there is no correlation of RDW, hemoglobin, platelets with severity of hypertension in pregnancy.

INTRODUCTION

The elevation of blood pressure associated with pregnancy is a health problem known as pregnancy induced hypertension (PIH) and affects about one tenth of pregnant women. The prevalence of PIH in northern India conducted in 18 districts and 24 centers is estimated to be 19% to 26% in age groups of 19-23 years and 23-30 years. (1)This problem can develop into a more severe condition called pre-eclampsia that might put the mothers and their pregnancies at risk. Preeclampsia is characterized by hypertension during pregnancy and high protein content in the urine. (1–3) Gestational hypertension and severe preeclampsia can be associated with pronounced hemolysis, disturbance in the levels of hepatic enzymes and changes in blood profile and the subsequently lower gestational age and fetal body weight . (1) Severe preeclampsia might also be associated with disturbance in oxidative balance. (2)cardiovascular problems; genetic defects, metabolic and nutritional abnormalities and others Few studies have examined the impact of preeclampsia on blood biomarkers on mothers and their newborns, which may augment the existing morbidity they suffered. For example, maternal and cord blood levels of homocysteine, lipids and heme oxygenase 1 were higher in preeclampsia as compared to healthy pregnant women. A study by Moraes et al. (4)showed higher levels of immature platelet fraction in preeclampsia. Some studies indicate that measuring hematological markers such as blood cell counts and subtype, might provide prognostic and diagnostic clues of the diseases relevant in both maternal and neonates. In this study, we compared hematological profile in preeclampsia mothers and umbilical cord blood to that measured in normal pregnant ones. In addition, possible correlations of hematological parameters between preeclamptic mothers and cord blood was also examined. The results tested to assess status in preeclampsia women and to predict outcomes in their newborns.

GESTATIONAL HYPERTENSION: according to ACOG

Defined as a systolic blood pressure of 140 mm Hg or more or a diastolic blood pressure of 90 mm Hg or more, or both, on two occasions at least 4 hours apart after 20 weeks of gestation in a woman with a previously normal blood pressure. (5)

Gestational hypertension is considered severe when the systolic level reaches 160 mm Hg or the diastolic level reaches 110 mm Hg, or both. On this occasion, the diagnosis may need to be confirmed within a shorter interval (minutes) than 4 hrs. To facilitate timely antihypertensive therapy. (5)

Gestational hypertension occurs when hypertension without proteinuria or severe features develops after 20 weeks of gestation and blood pressure levels return to normal in the postpartum period.

Up to 50% of women with gestational hypertension will eventually develop proteinuria or other end organ dysfunction consistent with the diagnosis of preeclampsia, and this progression is more likely when hypertension is diagnosed before 32 weeks of gestation. (6)

Women with gestational hypertension who present with severe range blood pressures should be managed with same approach as for women with severe preeclampsia.

Gestational hypertension and preeclampsia may also be undistinguishable in terms of long term cardiovascular risks, including chronic hypertension. (6)

PRE ECLAMPSIA WITHOUT SEVERE FEATURES defined as: as per ACOG

1) Systolic blood pressure of 140 mm Hg or more or diastolic blood pressure of 90 mm Hg or more on two occasions at least 4 hours apart after 20 weeks of gestation in a woman with a previously normal blood pressure. Systolic blood pressure of 160mm Hg or more or diastolic blood pressure of 110 mm Hg or more (severe hypertension can be confirmed within a short intervals (minutes) to facilitate timely anti hypertensive therapy)

And

2) Proteinuria of 300 mg or more per 24 hour urine collection or Protein/creatinine ratio of 0.3 mg/dL or more or Dipstick reading of 2+ (used only if other quantitative methods not available) .Or

3) in the absence of proteinuria: new-onset hypertension with the new onset of any of the following: Thrombocytopenia, Platelet count less than $100,000 \times 109/L$, Renal insufficiency: Serum creatinine concentrations greater than 1.1 mg/dL or a doubling of the serum creatinine concentration in the absence of other renal disease, Impaired liver function: Elevated blood concentrations of liver transaminases to twice normal

concentration, Pulmonary edema, New-onset headache unresponsive to medication and not accounted for by alternative diagnoses or visual symptoms.

PRE ECLAMPSIA WITH SEVERE FEATURES defined as:

1) Systolic blood pressure of 160 mm Hg or more or diastolic blood pressure of 110 mm Hg or more on two occasions at least 4 hours apart (unless antihypertensive therapy is initiated before this time)

2) Thrombocytopenia (platelet count less than 100,000 x 109/L,

3) Impaired liver function that is not accounted for by alternative diagnoses and as indicated by abnormally elevated blood concentrations of liver enzymes (to more than twice the upper limit normal concentrations), or by severe persistent right upper quadrant or epigastric pain unresponsive to medications

4) Renal insufficiency (serum creatinine concentration more than 1.1 mg/dL or a doubling of the serum creatinine concentration in the absence of other renal disease)

5) Pulmonary edema

6) New-onset headache unresponsive to medication and not accounted for by alternative diagnoses

7) Visual disturbances

ECLAMPSIA defined as:

Convulsive manifestation of the hypertensive disorders of pregnancy and is among the more severe manifestations of the disease. Eclampsia is defined by new-onset tonic-colonic, focal or multifocal seizures in the absence of other causative conditions such as epilepsy, cerebral arterial ischemia and infarction, intracranial haemorrhage, or drug use.

JNC 7 CLASSIFICATION OF HYPERTENSION IN PREGNANCY:

Chronic hypertension :

- BP >140 mmHg systolic or 90 mmHg diastolic prior to pregnancy orbefore 20 weeks gestation
- Persists >12 weeks postpartum

Pre eclampsia:

- BP >140 mmHg systolic or 90 mmHg diastolic with proteinuria (>300 mg/24 hrs) after 20 weeks gestation
- Can progress to eclampsia (seizures)
- More common in nulliparous women, multiple gestation, women with hypertension for >4 years, family history of preeclampsia, hypertension in previous pregnancy, renal disease

Chronic hypertension with superimposed preeclampsia :

- New onset proteinuria after 20 weeks in a woman with hypertension
- In a woman with hypertension and proteinuria prior to 20 weeks gestation
- Sudden two- to threefold increase in proteinuria
- Sudden increase in BP
- Thrombocytopenia
- Elevated AST or ALT

Gestational hypertension:

- Hypertension without proteinuria occurring after 20 weeks gestation
- Temporary diagnosis
- May represent preproteinuric phase of preeclampsia or recurrence of chronic hypertension abated in midpregnancy
- May evolve to preeclampsia

• If severe, may result in higher rates of premature delivery and growth retardation than mild preeclampsia

Transient hypertension:

- Retrospective diagnosis
- BP normal by 12 weeks postpartum
- May recur in subsequent pregnancies
- Predictive of future primary hypertension

International society of hypertension guidelines:

- **Preexisting hypertension:** Starts before pregnancy or <20 weeks of gestation, and lasts>6weeks postpartum with proteinuria.
- **Gestational hypertension:** Starts >20 weeks of gestation, and lasts <6 weeks postpartum.
- **Preexisting hypertension plus superimposed gestational hypertension** with proteinuria.
- **Preeclampsia:** Hypertension with proteinuria (>300 mg/24 h or ACR >30 mg/mmol [265 mg/g]). Predisposing factors are preexisting hypertension, hypertensive disease during previous pregnancy, diabetes, renal disease, first-or multiple pregnancy, autoimmune disease (SLE). Risks are fetal growth restriction, preterm birth.
- Eclampsia: Hypertension in pregnancy with seizures, severe headaches, visual disturbance, abdominal pain, nausea and vomiting, low urinary output: Immediate treatment and delivery required.
- **HELLP** (hemolysis, elevated liver enzymes, low platelets) syndrome: Immediate treatment and delivery required.

PATHOPHYSIOLOGY:

Several mechanisms of disease have been proposed in preeclampsia including the following: chronic uteroplacental ischemia, immune maladaptation, very low-density lipoprotein toxicity, genetic imprinting, increased trophoblast apoptosis or necrosis, and an exaggerated maternal inflammatory response to deported trophoblasts. (1–3) ,More recent observations suggest a possible role for imbalances of angiogenic factors in the pathogenesis of preeclampsia. It is possible that a combination of some of these purported mechanisms may be responsible, for triggering the clinical spectrum of preeclampsia. For example, there is clinical and experimental evidence suggesting that uteroplacental ischemia leads to increased circulating concentrations of antiangiogenic factors and angiogenic imbalances. (7,8)

HEMATOLOGIC CHANGES:

Various hematologic changes also may occur in women with preeclampsia, especially in preeclampsia with severe features. Thrombocytopenia and hemolysis may occur and may reach severe levels as part of HELLP syndrome. (1,5,6) Thrombocytopenia results from increased platelet activation, aggregation, and consumption and is a marker of disease severity. A platelet count less than 150,000 x 109/L is found in approximately 20% of patients with preeclampsia, varying from 7% in cases without severe manifestations to 50% in cases with severe manifestations. (4,9)However, reduced platelet counts are not found in all cases of preeclampsia or eclampsia. Interpretation of hematocrit levels in preeclampsia should take into consideration that hemolysis and hemoconcentration may occur. In some cases, the hematocrit may not appear decreased despite hemolysis because of baseline hemoconcentration. (10)Lactate dehydrogenase is present in erythrocytes in high concentration. High serum concentrations of LDH (more than 600 IU/L) may be a sign of hemolysis. (11)

PLATELETS: Blood platelets play critical roles in hemostasis, providing rapid protection against bleeding and catalyzing slower formation of stable blood clots via the coagulation cascade. They are also involved in protection from infection by phagocytosis of pathogens and by secreting chemokines that attract leukocytes. (2,4,9) Platelet function is commonly assessed by platelet count, bleeding time, and platelet aggregation or activation. However, defining and measuring in vivo platelet function remains a challenge. The assay of platelets can be considered as one of the prognostic

tool in management of hypertensive disorders of pregnancy . (2,4,12)The alterations in coagulation and fibrinolysis play a role in the pathogenesis of preeclampsia. The markers of platelet activation include platelet count (PC), platelet distribution width (PDW), mean platelet volume (MPV) and plateletcrit (PCT). These indices are cost-effective and easily available as they are derived from routine blood investigations.

Platelet indices may be used as an early markers for the diagnosis of thromboembolic diseases. These parameters can be used for prediction of Pregnancy Induced Hypertension (PIH) before the derangement in prothrombin time (PT), activated partial thrombin time (ApTT) and thrombin time (TT) values are observed(9). Thrombocytopenia is the most common hematological abnormality observed in preeclampsia and it may be due to consumption of platelets during abnormal activation of the system.

D-dimer, soluble vascular endothelial growth factor receptor and platelet distribution width may be used as markers for early diagnosis, as well as for the purpose of prognostication of the disease. (9,10,12)

Alterations in coagulation, fibrinolysis and platelet and vascular endothelial function are believed to play an important role in the pathogenesis of preeclampsia. The fall in the platelet count is most frequent abnormality and is probably due to consumption during low-grade intravascular coagulation.

Mean platelet volume and platelet distribution width are significantly higher in patients with preeclampsia compared to those with normal pregnancy, has a role as prognostic markers in assessing the severity of preeclampsia and giving an early prediction of progressive hypertension and severity of the disease. (10)

HEMOGLOBIN: Hemoglobin (Hb) measurement is a routine standard test for evaluating physical status among pregnant women in their first visit to primary health care clinics.

Throughout normal pregnancy, blood volume expands by an average of 50% compared with the non-pregnant state.(13) This rapid expansion of blood volume starts in the first trimester of pregnancy. Moreover, plasma volume increases more than the increase in red blood cell (RBC) mass, which produces a net decline in

hemoglobin concentration during the first half of pregnancy. This is known as the physiologic anemia of pregnancy. (8,13)

Hb concentration reaches the nadir in the second trimester of pregnancy because a concurrent increase does not match the increase in plasma volume in RBC mass increase. Based on the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) guidelines, anemia in pregnancy has different cutoffs based on the trimester (first trimester: <11.0 g/dl; second trimester: <10.5 g/dl; and third trimester: <11 g/dl. Physicians and health care providers give more attention to maternal anemia than high blood levels. (1,13) Elevated Hb levels in the first trimester indicate possible pregnancy complications and should not be mistaken for good iron status. Hb levels during early pregnancy play a role in predicting the risk of PE . (8) Both high and low maternal hemoglobin concentrations in early pregnancy have been associated with elevated blood pressure levels during pregnancy, impaired placental function, and a higher risk of gestational hypertensive disorders. The underlying pathophysiological mechanisms for these associations are unclear, but it has been hypothesized that a dysregulated iron status may play a role. (1,6,11)

A dysregulated iron status can cause oxidative stress. Iron overload leads to more production of reactive oxygen species (ROS), whereas iron deficiency can cause leakage of ROS through mitochondrial damage. Oxidative stress leads to endothelial damage and impaired vasoreactivity, which may negatively affect placental development and gestational hemodynamic adaptations, predisposing women to the development of gestational hypertensive disorders. (8)

Already in nonpregnant populations, increased serum ferritin concentrations, which reflect high iron stores, have been associated with the risk of hypertension, increased arterial stiffness, and a higher risk of cardiovascular disease. In pregnant populations, far less is known about the influence of maternal iron status in early pregnancy on gestational hemodynamic adaptations and the risk of gestational hypertensive disorders. (13)

EFFECTS ON HEMOGLOBIN AND HEMATOCRIT:

The relationship between maternal hemoglobin and hematocrit levels and pregnancy outcome has been generally studied. Maternal anemia has been considered as a risk factor for an undesirable pregnancy outcome. According to the study of Stove et al. conducted on Bulgarian pregnant women, increase of hematocrit, hemoglobin and red cell mass in early pregnancy can be considered a risk factor for preeclampsia, intrauterine growth restriction and fetal death in the later stages of pregnancy. (8)

Measuring hemoglobin and hematocrit is common during pregnancy. Normal level of hemoglobin is 12 to 16 grams per deciliter for women of childbearing age. (8) Its minimum normal value is 11 grams per deciliter in the first and third trimester of the pregnancy and 10.5 grams per deciliter in the second trimester. (2,7,13) Its amount gets lower than normal due to anemia and higher than normal because of erythrocytosis. Both hemoglobin and hematocrit are measured through fresh whole blood and are dependent on plasma volume. Thus, factors such as dehydration as well as over hydration can affect the test results.

In fact, hematocrit is a more precise parameter than hemoglobin to determine the ratio of erythrocyte volume to the total blood volume. Viscosity of blood is changeable, which is associated with geometry of blood vessels and blood flow level, blood plasma concentration, volume concentration of blood cells and hematocrit. Therefore, change in the mentioned parameters can be a warning of a high-risk pregnancy. (14)

EFFECT ON LEUCOCYTES:

Many studies showed that neonates of hypertensive women, especially those who have preeclampsia, are more liable to have hematological permutation. Although the etiology and pathogenesis of preeclampsia is not fully known, a proinflammatory immune state prevails and can disrupt fetal hematopoiesis. Some of the effects on newborns include neonatal thrombocytopenia, neutropenia, a reduction in T regulatory cells, and an increased cytotoxic natural killer cell profile. (15) There are no established international guidelines for routine screening of babies delivered to women with preeclampsia.

Early neonatal hematological screening might help to decrease morbidity and improve growth, development, and survival of the baby. (1,15,16)

Early neonatal hematological screening might help to decrease morbidity and improve growth, development, and survival of the baby. (3,4)

AIM AND OBJECTIVES

To find out the differences of hematological parameters of maternal and umbilical cord blood of hypertensive diseases of mothers with those of normotensive mothers

PRIMARY OBJECTIVE:

To compare the hematological parameters (hemoglobin , hematocrit, platelets , MCH, MCHC , RDW, PDW , platelests, TLC, neutrophils) of hypertensive mothers and umbilical cord blood to normotensive pregnant women

SECONDARY OBJECTIVE:

- 1. To find out incidence of polycythemia, neonatal jaundice and need for phototherapy in hypertensive and normotensive pregnant women
- 2. To find and compare changes in hematological parameters in gestational hypertension, pre-ecclampsia and ecclampsia

REVIEW OF LITERATURE

Many studies have been done look into the hematological changes with hypertensive disease of pregnancy, however the severity of the disease as assessed by grading has not been well assessed. Also it is unclear which hematological parameter is most affected.

Okoye H C et al in 2016 did a study from Malawi on 100 hypertensive pregnant women cases and 100 normotensive pregnant women admitted for delivery which served as controls. They found that hypertension in pregnancy is associated with increase in incidences of polycythaemia, neutropenia, and thrombocytopenia were found to be 8%, 15%, and 38% among neonates of hypertensive mothers and 0%, 2%, and 8% among neonates of normotensive mothers, respectively. These incidences were significantly different between the groups.

Yilmaz ZV et al in 2016, published that red cell distribution width is a simple parameter and changes with severity of preecclampsia .

Abdullahi H et al in 2014 reported on a study done in Sudan that Red cell distribution width is not correlated with pre-ecclampsia in Sudanese pregnant women

Viana-Rojas JA et al in 2017 did a study on 64 patients and demonstrated that Hemoglobin and platelet count measures were similar between study groups. Preeclamptic patients had levels of RDW ($14.7 \pm 1.4 \text{ vs. } 13.4 \pm 0.7, \text{ p} = 0.0001$) and MPV ($11.8 \pm 2.4 \text{ vs. } 11.0 \pm 1.4, \text{ p} = 0.03$) more elevated than control group. Moreover, severe preeclamptic subgroup had more elevated levels of RDW ($15.0 \pm 1.6 \text{ vs. } 14.0 \pm 0.6, \text{ p} = 0.001$) and MPV ($12.7 \pm 2.8 \text{ vs. } 10.8 \pm 1.8, \text{ p} = 0.01$) in comparison with mild preeclamptic patients. They concluded that RDW and MPV are accessible and inexpensive measures associated with the severity of preeclampsia

Elgari MM et al in2018did a study in Saudi Arabia , on 80 preecclamptic pregnant women reported significant change in multiple hematological parameter like PCV, Hb, MCH, MCHC and platelet count.

Though these studies are done on various hematological parameters like Hb, PCV, MCH, MCHC, RDW, Platelet width distribution, Platelet count, homocysteine, but

there is lack of consensus as which parameter is most effected by hypertension in pregnancy and its increasing severity.

R Rahim et al 2010: did a study on platelet count in 100 cases of pregnancy induced hypertension, The aim of the study was to see the platelet count in pregnancy induced hypertension (PIH). It was a prospective study. The study was done on 100 cases of PIH patients in Gynae & Obstetrics department of Mymensingh Medical College Hospital (MMCH) during the period of January to July 2006. Among the 100 cases 60 were eclamptic, 34 were pre eclamptic (PE) and 06 were gestational hypertensive (GH) patients. All the necessary informations and data were collected by interviewing the patients or their attendants on a pre-designed data collection sheet.

Blood pattern had been accrued from the patients and required investigations were executed. Most of the eclampsia cases were from below average socioeconomic status of family, and other two businesses were from average socioeconomic reputation of circle of relatives. Among eclamptic patients 76.60% have been primigravida. In eclamptic institution 93.33% did no longer get any antenatal care however eighty three.33% GH cases had everyday antenatal care. Among the eclamptic institution imply maternal age become 23.12 years and 47.00% had low platelet matter (<1,50,000/cmm). Among eclampsia organization 60.00% had low platelet count number (<1,50,000/cmm). In this study 12% cases developed postpartum haemorrhage (PPH) and among them 66.67% had low platelet count (<1,50,000/cmm). Although there may be hazard of development of disseminated intravascular coagulation (DIC) and Liver Failure in sufferers with low platelet rely, but in this study there is no such incidence. In this study mortality become 3% and all have been in eclamptic organization. Those sufferers had low platelet rely 74.28% &had low start weight (LBW) toddlers. Platelet count is a completely essential research for antenatal mother having PIH, as it's miles at once associated with maternal and perinatal final results.

Tejeswini KK et al 2016, did a study on Platelet count as a prognostic indicator in pregnancy induced hypertension. Study became accomplished to assess the software of platelet be counted as a prognostic indicator in pregnancy precipitated hypertension to understand and manage early the headaches springing up and to have a better being pregnant final results.

This study includes 76 instances of pregnancy brought about high blood pressure over a period of 18 months. Platelet estimation become executed for all cases and sufferers with documented platelet depend of much less than 1,50,000/cumm was documented as thrombocytopenia. Of the 76 cases of pregnancy induced hypertension, 32 (42.1%)were recognized with thrombocytopenia, and an accelerated prevalence of maternal and fetal morbidity & mortality become discovered. This took a look at and the results show that the assay of platelets can be taken into consideration as one of the prognostic tool in management of hypertensive problems of pregnancy

Thalor N et al 2019: performed a study on correlation between platelet indices and preeclampsia. Preeclampsia is one of the foremost health troubles causing maternal morbidity and mortality, complicating 3–8% of pregnancies. It has been recommended that the changes within the coagulation and fibrinolysis play a function inside the pathogenesis of preeclampsia. The markers of platelet activation encompass platelet count number, platelet distribution width, imply platelet quantity and plateletcrit. The MPV and PDW confirmed a great distinction between the 2 organizations and increasing values with growing BP. However, the PC and PCT in this study did not display a vast correlation with preeclampsia. Thus, the platelet indices, specially the MPV and PDW, which are cost-efficient and without problems available, can be reliable in the prediction and early prognosis of preeclampsia, as well as a marker for the severity of preeclampsia.

Dadhich et al 2012: did a study on predictive value of platelet indices in development of preeclampsia. To examine the affiliation between changes in platelet indices (platelet matter, suggest platelet quantity, platelet distribution width and development of preeclampsia.Patients with preeclampsia are much more likely to have good sized lower in platelet remember, boom in PDW and MPV. These modifications can be located at an earlier gestational age than large rise in BP can be observed and aredirectly proportional to progressive rise in hypertension. Thus, estimation of platelet indices can be considered as an early, easy and cost-powerful procedure within the assessment of severity of preeclampsia.

Bawore SG et 2021: conducted a study on a pattern of platelet indices as a potential marker for prediction of pre-eclampsia among pregnant women attending a Tertiary Hospital, Ethiopia: A case-control study. A total of 180 pregnant women were

included in the study. Platelet count and platelet crit levels tend to lower as preeclampsia will become greater severe. In assessment, the mean platelet quantity and platelet distribution widths were appreciably multiplied with the severity of preeclampsia (P<0.001). Platelet distribution width (rho = zero.731, p<zero.001) and suggest platelet volume (rho = 0.674, p<zero.001) had statistically substantial tremendous relationships with mean arterial pressure. The pleasant metric for predicting preeclampsia turned into platelet distribution width (AUC = zero.986; ninety fivep.CCI; zero.970, 1). Platelet indices, along with platelet count number, mean platelet volume, platelet distribution width, and Platelet crit, were recognized as promising candidate markers for predicting preeclampsia in pregnant ladies. In the future, a serial examination of these indicators at some stage in various trimesters of pregnancy have to be carried out.

Abumohsen H et al 2021:studied the Association between High Hemoglobin Levels and Pregnancy Complications, Hypertension Among Palestinian Women. hypertensive disorders of pregnancy (HDP) are the principal causes of maternal morbidity and mortality. The maternal morbidity and mortality burden for Palestinian women is rather high, suggesting a substandard quality of care. Therefore, an early analysis of GDM and gestational hypertension (GH) can enhance prenatal care for pregnant women and enhance being pregnant effects. Previous research verified that increased Hb degrees inside the first trimester indicate feasible being pregnancy complications.

However, ethnic variations may want to play a role in figuring out the magnitude of the association. They hypothesized that high Hb stages (≥ 12.5 g/dl) inside the first trimester (6-13 gestational weeks) are related to elevated SBP and DBP amongst pregnant Palestinian women visiting prenatal clinics in Palestine, The final wide variety of eligible information was 2565. Pregnant women with excessive Hb degrees within the first trimester were at better threat of high systolic blood strain; OR=3.048, 95p.CCI, [1.252-7.421]) at 24 wks. Their findings advice that Hb level at registration might be utilized in predicting the chance of HP among Palestinian ladies who never had a previous history of these situations. The outcomes of this take a look at ought to have vital clinical implications for early screening, which can improve preventive and healing health offerings to sell the health of pregnant ladies and youngsters.

Taeubert et al 2022 : did a study on Maternal Iron Status in Early Pregnancy and Blood Pressure Throughout Pregnancy, Placental Hemodynamics, and the Risk of Gestational Hypertensive Disorders. In nonpregnant populations, higher serum ferritin, which reflects excessive iron stores, is related to an increased threat of hypertension. They hypothesized that a dysregulated maternal iron fame in early pregnancy may result in impaired gestational hemodynamic variations, main to an extended hazard of gestational hypertensive problems. Higher maternal early pregnancy serum ferritin concentrations had been associated with better systolic and diastolic blood pressure in the course of being pregnant within the simple fashions (P values < 0.05).

No constant institutions had been present of maternal iron status in early pregnancy with gestational hemodynamic adaptations or the dangers of gestational hypertensive issues. Further studies are needed to have a look at the capacity role of iron metabolism in the improvement of gestational hypertensive problems inside higherhazard populations.

Khoigani et al 2012: Did a observe on The relationship of hemoglobin and hematocrit inside the first and second half of being pregnant with being pregnant outcome. Considering the connection of low and high ranges of hemoglobin and hematocrit with a few pregnancy complications, This have a look at additionally aimed to investigate the changes in hemoglobin and hematocrit values all through the second and first half of of pregnancy and its relation with being pregnant final results.

Low tiers of hemoglobin in the course of the primary half of pregnancy turned into related to preeclampsia (p = 0.024). Moreover, low levels of hemoglobin at some stage in the second half of pregnancy changed into associated with the danger of preterm untimely rupture of membranes (p = zero.01). In addition, mothers with lower blood dilution, as a physiological manner at some point of being pregnant, had been extra prone to preeclampsia (p = zero.04).

Hemoglobin degrees in the first and second half of being pregnant are expecting preeclampsia and untimely preterm rupture of membranes. Increased hematocrit stages inside the second half of pregnancy or lack of reduction of hematocrit stages within the second half as compared to the first half can estimate preeclampsia.

Enawgaw et al 2017: performed a study on hematological parameters of hypertensive and normotensive individuals, from a total of 252 study subjects, about 67.5% were females. The mean age of study subjects was 50.3 ± 11 yearsfor hypertensive individuals and 49.8 ± 11.6 years for normotensive individuals with range of 18–65 years. In this study, the median value of WBC, RBC, Hgb, HCT, MCV and the mean value of MCHC, RDW, MPV andPDW were significantly higher in hypertensive group compare additionally, WBC, RBC, Hgb, HCT and PLT showed statistically good sized positive correlations with blood pressure indices. Platelet rely and MCH did not show statistically considerable difference among the two groups. Additionally,WBC, RBC, Hgb, HCT and PLT showed statistically significant positive correlations with blood pressure indices. Platelet rely is statistically significant difference between the two groups.

Hypertension has effect on hematological parameters. In this study the mean and median values of haematological parameters in hypertensive people were appreciably one of a kind compared to reputedly healthy normotensive individuals. Hence, hematological parameters may be used to reveal the analysis of the disorder and manage hypertensive associated complications, and it is essential to evaluate hematological parameters for hypertensive people which may additionally assist to prevent complications related hematological disorders.

Sileshi B et al 2021: Studied hematological parameters of hypertensive and normotensive individuals, 102 hypertensive and 102 healthy controls were enrolled on this observe. The median price of white blood cell (WBC), hemoglobin (Hgb), hematocrit (HCT), red cell distribution width (RDW) and mean platelet volume (MPV) were drastically higher in hypertensive group compared to seemingly healthy control group. Additionally, RBC (red blood cell)count, HCT and RDW showed statistically significant positive correlations with systolic and

diastolic blood pressure. WBC count and RDW were significantly and positively correlated with body mass index (BMI). Platelet (PLT) count had a significant but negative correlation (r -0.219, P = 0.027) with duration of hypertension illness while MPV showed positive and significant correlation (r = 0.255, P = 0.010). The median values of WBC, Hgb, HCT, RDW and MPV were significantly higher in hypertensive patient compared to apparently healthy individuals. Assessment of hematological

parameters for hypertensive individuals which may also assist to prevent complications related to hematological aberrations.

Ranjith babu et al 2015 : They determined that the suggest values of Hemoglobin, Erythrocyte remember, Hematocrit, MCH and MCHC were elevated in primary hypertension at the same time as, they suggest ranges of MCV were observed to be lower within the hypertensive institution when in comparison to normotensive subjects.

Hypertension has impact on hematocrit, hemoglobin, RBC matter, WBC be counted and Platelet depend which can be used for early detection of hypertensive inclined individuals.

MATERIALS ANDMETHODS

METHODOLOGY:

Study Setting: Study was conducted in the Department of Obstetrics and Gynecology and Department of Neonatology, AIIMS Jodhpur.

Ethical Consideration:

Prior to the commencement of data collection, the study protocol was reviewed and approved by Institutional Ethics Committee (AIIMS/IEC/2021/3476).

Study design: Prospective cohort study

Study population: Pregnant women, after 20 weeks of pregnancy diagnosed with hypertension, according to ACOG criteria.

Study Period: This study was conducted from April 2020 to october 2022.

INCLUSION CRITERIA:

- Pregnant women, after 20 weeks of pregnancy diagnosed with hypertension Singleton pregnancy as cases
- Willing to participate in study

EXCLUSION CRITERIA:

- Multiple pregnancy
- Pregnant women with chronic medical conditions e.g.- heart disease, renal disease, liver disease, pulmonary disease, chronic anemia etc.
- Pregnancy with known major congenital malformations,
- Rh isoimmunised pregnancy
- Intrauterine fetal demise
- h/o smoking
- Women not ready to participate in study

Group A - Hypertensive disease of pregnancy

Group B - Normotensive (Control Group)

Group A - Hypertensive disease of pregnancy

This group included Pregnant women, after 20 weeks of pregnancy diagnosed with hypertension

Singleton pregnancy, hypertensive disease of pregnancy described according to ACOG guidelines.

According to ACOG, a systolic blood pressure of 140 mm Hg or more or a diastolic blood pressure of 90 mm Hg or more, or both, on two occasions at least 4 hours apart after 20 weeks of gestation in a woman with a previously normal blood pressure

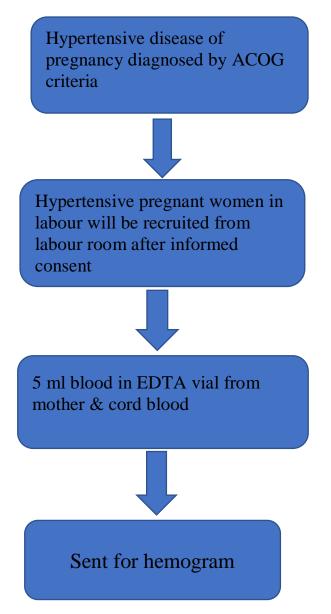


Figure :1

Figure 2: BP apparatus

Blood Pressure Measurement:

Patient seated with feet supported for 2–3 minutes before blood pressure is measured.

- Blood pressure taken on both arms at the first antenatal visit.
- The right arm used thereafter if there is no significant difference between the arms.
- While measuring blood pressure, SBP palpated at the brachial artery before inflating the cuff to 20 mmHg above the recorded level.
- The cuff then deflated slowly. DBP is recorded as Korotkoff phase V (K5) and if K5 is not present, can be recorded as Korotkoff phase IV (K4).
- A standard cuff used for arms with a circumference of ≤33 cm while the large cuff (15 × 33 cm bladder) used for arms with a circumference of >33 cm.
- blood pressure measured in the sitting position or left lateral recumbency (on the left arm) rather than the supine position

Group 2- Normotensive (Control Group)

After the umbilical cord was cut, around 5 ml of cord blood was obtained in EDTA vial and sent for the evaluation of the complete hemogram to hematology lab .it was Analysed by Mindray BC-6200 Automatic Hematology Analyzer.

Figure 4: Around 5ml Blood Collected Automatic In EDTA Vial Figure 5: Mindray BC-6200 Hematology Analyzer

SAMPLE SIZE CALCULATION

According to Henle C Okyne study(4) mean difference of haematocrit between the two groups is 5.6, taking the power of study as 90% (β error) and confidence interval of 95%, sample size of 46 is required in each group, making total sample size of 92 women & taking loss of data as 10 %.

STATISTICAL ANALYSIS

Data was entered in Microsoft Excel Sheet. All the analysis was performed by using Statistical package for social sciences (SPSS) software 21. Student t test was used to analyze means between 2 groups and for categorical variables chi-square test was used, with significant level of P being 0.05 for testing the differences between two groups.

OBSERVATIONS AND RESULTS

During the study period from April 2021 to October2022, a total 120 patients were approached for enrollment 60 patients were hypertensive & 60 were normotensive patients, hematological parameters compared between these 2 groups & babies of both the groups .

TABLE 1: DEMOGRAPHIC DETAILS OF HYPERTENSIVE &NORMOTENSIVE GROUP

We compared the demographic variables in two groups in terms of qualification, occupation, parity, period of gestation.

TABLE	1:	COMPARISION	IN	QUALIFICATION	BETWEEN
HYPERTI	ENSIV	'E & NORMOTENSI	IVE GI	ROUP	

Qualification	Hypertensive		Normotensive		Total	
Quanneation	Ν	%	Ν	%	Ν	%
Illiterate	4	6.67	0	0.00	4	3.33
Primary	5	8.33	0	0.00	5	4.17
Middle school	11	18.33	10	16.67	21	17.50
Secondary school	8	13.33	24	40.00	32	26.67
Higher secondary	2	3.33	22	36.67	24	20.00
Graduate	20	33.33	4	6.67	24	20.00
Post graduate	10	16.67	0	0.00	10	8.33
Total	60	100.00	60	100.00	120	100.00

Table 1 shows that 6.67% were illiterate. 8.3%, 18.33%, 13.33%, 3.33% were from primary, middle school, secondary school, & higher secondary respectively, & 33.3% were graduates 16.67% were postgraduates in hypertensive group, where as 16.67%, 40%, 36.67% were from middle school, secondary school, & higher secondary respectively & 6.67% were graduates in normotensive group

TABLE 2: COMPARISION OF LOCALITY BETWEEN HYPERTENSIVE &NORMOTENSIVE GROUP

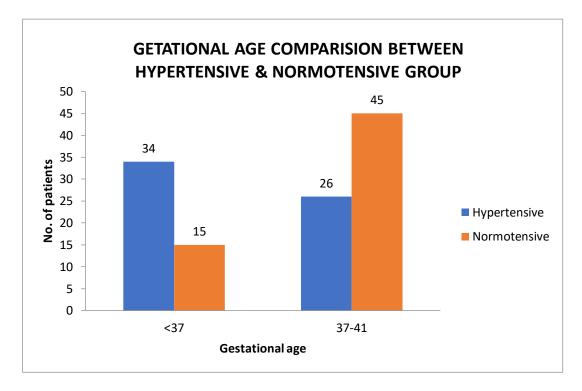
Locality	Hypertensive		Normo	tensive	Total	
Locanty	Ν	%	Ν	%	Ν	%
Rural	14	23.33	26	43.33	40	33.33
Urban	46	76.67	34	56.67	80	66.67
Total	60	100.00	60	100.00	120	100.00

Table 2 shows that 23.3 % were from rural, & 76.7 % were from urban area in hypertensive group, where as 43.33 % were from rural, & 56.67 % were from urban area in normotensive group

TABLE 3: COMPARISION IN GRAVIDITY BETWEEN HYPERTENSIVE &NORMOTENSIVE GROUP

Gravidity	Hypertensive		Normo	tensive	Total		
	Ν	%	Ν	%	Ν	%	
Primi	29	48.33	26	43.33	55	45.83	
Multi	31	51.67	34	56.67	65	54.17	
Total	60	100.00	60	100.00	120	100.00	

Table 3 shows that 48.3% were primigravida & 51.67 % were multigravida in hypertensive group, and 43.3 % were primigravida & 56.67 % were ,multigravida in normotensive group


TABLE4:GESTATIONALAGECOMPARISIONBETWEENHYPERTENSIVE & NORMOTENSIVE PATIENTS

Gestational age	Hypertensive		Normo	tensive	Total		
Sestutional age	Ν	%	Ν	%	Ν	%	
<37	34	56.67	15	25.00	49	40.83	
37-41	26	43.33	45	75.00	71	59.17	
Total	60	100.00	60	100.00	120	100.00	

Chi square 12.45, P value 0.0004 (S)

Table 4 & figure : 1, shows that 56.67 % were preterm deliveries & 43.33% were term deliveries in hypertensive group and in normotensive group 25% were preterm deliveries & 75 % were term deliveries.

On applying chi square test, both the groups were statistically significant with p value of 0.0004 which was < 0.05

Figure : 1: GESTATIONAL AGE COMPARISION BETWEEN HYPERTENSIVE & NORMOTENSIVE GROUPS

TABLE 5: SPECTRUM OFHYPERTENSIVE DISORDERS OF PREGNANCY

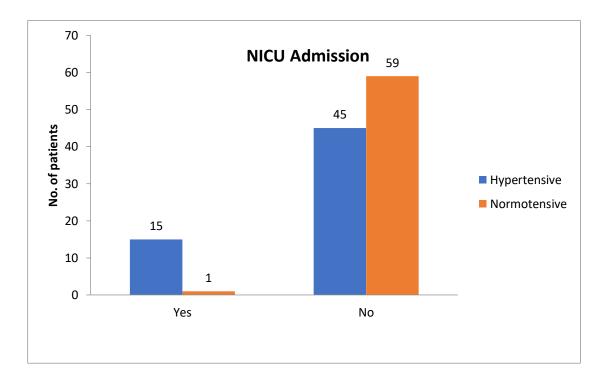
Hypertensive disease of pregnancy	No. of patients	Percentage
Gestational hypertension	39	32.50
Partial HELLP	1	0.83
Preeclampsia with severe features	13	10.83
Preeclampsia without severe features	7	5.83
Total	60	100.00

Table 5: shows that out of 60 hypertensive patients 32.5 % were gestational hypertension, 0.83% were partial HELLP, 10.83 % were pre eclampsia with severe features, 5.83% were pre eclampsia without severe features

TABLE 6: COMPARISION OF HEMATOLOGICAL PARAMETERS IN SPECTRUM OF HYPERTENSIVE DISORDERS OF PREGNANCY

Variables	Gestational htn (Mean±SD)	Partial HELLP (Mean±SD)	PE with SEVERE FEATURES(Mean±SD)	PE without SEVERE FEATURES (Mean±SD)	P value
HB	11.95±1.49	8.1±0.00	12.07±1.39	12.55±1.39	0.442
HEMATOCRIT	35.33±6.42	23.9±0.00	36.47±7.16	37.19±4.4	0.615
МСН	2.67±0.87	0.7 ± 0.00	1.91±0.54	2.18±0.67	0.027
МСНС	28.09±3.1	30.4±0.00	28.41±2.66	27.84±2.63	0.915
RDW	32.92±1.31	34±0.00	32.03±1.54	32.98±1.87	0.314
TLC	46.59±10.34	71.1±0.00	50.29±11.01	49.15±14.57	0.631
POLYMORPHS	14.97±1.96	17.6±0.00	16.21±4.21	15.85±1.38	0.249
PLATELETS	12147.95±3215.43	14300±0.00	12241.43±3751.5	12253.08±4413.67	0.994
PDW	7793.08±2583.86	7760±0.00	7457.14±2237.44	7531.46±2104.86	0.911

Table 6 shows there is no statistical difference of hematological parameters like hemoglobin , hematocrit, MCHC, RDW, PDW, pletelets, TLC, neutrophils in mothers with gestational hypertension, pre eclampsia without severe features , pre eclampsia with severe features , & partial HELLP, except for MCH which showed statistically significant difference between above groups.


TABLE 7: COMPARISION OF NICU ADMISSION BETWEEN NEWBORNBABIES OF HYPERTENSIVE & NORMOTENSIVE PATIENTS

NICU admission	Hypertensive		Normo	tensive	Total		
for baby	N	%	N	%	Ν	%	
Yes	15	25.00	1	1.67	16	13.33	
No	45	75.00	59	98.33	104	86.67	
Total	60	100.00	60	100.00	120	100.00	

Chi square 14.13, P value 0.0002 (S)

NICU admissions in hypertensive group were 15 from total of 60 patients, & NICU admissions in normotensive group were 1 from total of 60 patients.

Both groups were compared by chi square test. P value was **0.0002**which was <0.05, thus both groups are**statistically significant** in terms of NICU admissions.

FIGURE 2: COMPARISION OF NICU ADMISSION BETWEEN NEWBORN BABIES OF HYPERTENSIVE & NORMOTENSIVE PATIENTS

TABLE 8: COMPARISION OF NEONATAL COMPLICATIONS BETWEENHYPERTENSIVE & NORMOTENSIVE GROUPS

Birth axphasia	Нуре	Hypertensive		Normotensive		`otal	P value
Ditti uxpitusiu	N	%	Ν	%	Ν	%	1 vulue
Birth asphyxia	2	3.33	1	1.67	3	2.50	1.000
Fever	0	0.00	2	3.33	2	1.67	0.495
Phototherapy	21	35.00	18	30.00	39	32.50	0.558
Polycythemia	16	26.67	7	11.67	23	19.17	0.036
Prematurity	6	10.00	6	10.00	12	10.00	1.000
TTNB	5	8.33	4	6.67	9	7.50	1.000
No complications	10	16.67	22	36.67	32	26.67	0.013
Total	60	100.00	60	100.00	120	100.00	-

Table 7 shows that out of 60 babies, 3.33%, 35%, 26.67%, 10%, 8.33%, had developed birth asphyxia, had need for phototherapy, developed polycythemia, prematurity, TTNB respectively.

TABLE 9: COMPARISON OF HAEMATOLOGICAL PARAMETERSBETWEEN HYPERTENSIVE & NORMOTENSIVE MOTHERS

	Mother			
Variables	Hypertensive mother	Normotensive mother	t value	p value
	(Mean±SD)	(Mean±SD)		
Haemoglobin	12.03±1.53	12.19±1.45	6.00	0.549
НСТ	35.67±6.22	37.03±4.27	1.396	0.167
Platelets	2.44±0.86	2.54±0.8	0.367	0.525
МСН	28.11±2.9	28.92±2.57	1.617	0.108
МСНС	32.85±1.47	32.76±0.95	0.39	0.696
RDW	47.99±11.65	48.83±9.37	0.438	0.661
PDW	15.35±2.23	15.91±1.92	1.46	0.146
TLC	12217.5±3482.73	10861.83±3406.02	2.156	0.033
Polymophs	7696.65±2393.59	9258.81±11177.7	1.055	0.293

1) **HEMOGLOBIN**: Mean hemoglobin was 12.03 with standard deviation of 1.53 in hypertensive group, and Mean hemoglobin was 12.19gm% with standard deviation of 1.45 in normotensive group.

Hemoglobin in both groups was compared by Unpaired t test. P value was 0.549 which was > 0.05, thus both groups are comparable in terms of hemoglobin.

2) **HEMATOCRIT:** Mean hematocrit was 35.67 with standard deviation of 6.22 in hypertensive group, and Mean hematocrit was 37.03 with standard deviation of 0.8 in normotensive group.

Haematocrit in both groups was compared by Unpaired t test. P value was 0.167 which was > 0.05, thus both groups are comparable in terms of hematocrit.

3) **PLATELETS :** Mean platelets was 2.44 lakhs with standard deviation of 0.86 in hypertensive group, and Mean platelets was 2.54 lakhs with standard deviation of 0.8 in normotensive group.

Platelets in both groups was compared by Unpaired t test. P value was 0.525 which was > 0.05, thus both groups are comparable in terms of platelets.

4) **MCH:** Mean MCH was 28.11 with standard deviation of 2.9 in hypertensive group, and Mean MCH was 28.9 with standard deviation of 2.57 in normotensive group.

MCH in both groups was compared by Unpaired t test. P value was 0.108 which was > 0.05, thus both groups are comparable in terms of MCH.

5) **MCHC:** Mean MCHC was 32.85 with standard deviation of 1.47 in hypertensive group, and Mean MCHC was 32.76 with standard deviation of 0.95 in normotensive group.

MCHC in both groups was compared by Unpaired t test. P value was 0.696 which was > 0.05, thus both groups are comparable in terms of MCHC

6)**RDW:** Mean RDW was 47.99 with standard deviation of 11.65 in hypertensive group, and Mean RDW was 48.83 with standard deviation of 9.37 in normotensive group.

RDW in both groups was compared by Unpaired t test. P value was 0.661 which was > 0.05, thus both groups are comparable in terms of RDW

7)**PDW:** Mean PDW was 15.35 with standard deviation of 2.23 in hypertensive group, and Mean PDW was 15.91 with standard deviation of 1.92 in normotensive group.

PDW in both groups was compared by Unpaired t test. P value was 0.146 which was > 0.05, thus both groups are comparable in terms of PDW

8)**TLC:** Mean TLC was 12217.5/cumm with standard deviation of 3482.59 in hypertensive group, and Mean TLC was 10861/cumm with standard deviation of 3406.02 in normotensive group.

TLC in both groups was compared by Unpaired t test. P value was **0.033**which was <0.05, thus both groups are **statistically significant** in terms of TLC

9)**POLYMORPHS:** Mean polymorphs was 7696.65 with standard deviation of 2393.59 in hypertensive group, and Mean polymorphs was 9258.81 with standard deviation of 11177.7 in normotensive group.

Polymorphs in both groups was compared by Unpaired t test. P value was 0.293 which was >0.05, thus both groups are comparable in terms of polymorphs.

TABLE 10: COMPARISION OF HAEMATOLOGICAL PARAMETERSBETWEEN CORD BLOOOD SAMPLES OF HYPERTENSIVE MOTHERS &NON HYPERTENSIVE MOTHERS

	Newborn cord blood samples of			
Variables	Hypertensive	Normotensive	t value	p value
	mother (Mean±SD)	mother (Mean±SD)		
HB	16.11±3.29	14.44±2.59	3.092	0.002
HEMATICRIT	46.33±12.58	46.27±6.3	0.039	0.975
МСН	34.36±3.52	34.04±2.16	0.593	0.553
МСНС	33.49±1.61	33.19±1.49	1.066	0.288
RDW	55.51±19.79	53.69±6.68	0.677	0.499
TLC	14344.83±23774.52	13260.17±1682.52	0.352	0.725
POLYMORPHS	6588.63±3025.6	9181.67±1732.25	5.761	<0.0001
PLATELETS	2.32±0.91	2.69±0.58	2.643	0.009
PDW	14.07±3.39	12.7±1.48	2.868	0.004

1)HEMOGLOBIN : Mean hemoglobin was 16.11 with standard deviation of 3.29 in hypertensive group, and Mean hemoglobin was 14.44gm% with standard deviation of 6.3 in normotensive group.

hemoglobin in both groups was compared by Unpaired t test. P value was **0.002** which was <0.05, thus both groups are**statistically significant** in terms of hemoglobin

2)HEMATOCRIT: Mean hematocrit was 46.33 with standard deviation of 12.58 in hypertensive group, and Mean hematocrit was 46.27 with standard deviation of 6.3 in normotensive group.

Hematocrit in both groups was compared by Unpaired t test. P value was 0.975 which was > 0.05, thus both groups are comparable in terms of hematocrit.

3)PLATELETS : Mean platelets was 2.32 lakhs with standard deviation of 0.91 in hypertensive group, and Mean platelets was 2.69 lakhs with standard deviation of 0.58 in normotensive group.

Platelets in both groups was compared by Unpaired t test. P value was **0.009** which was <0.05, thus both groups are **statistically significant** in terms of platelets.

4)MCH: Mean MCH was 34.36 with standard deviation of 3.52 in hypertensive group, and Mean MCH was 34.04 with standard deviation of 2.16 in normotensive group.

MCH in both groups was compared by Unpaired t test. P value was 0.553 which was > 0.05, thus both groups are comparable in terms of MCH.

5)**MCHC:** Mean MCHC was 33.49 with standard deviation of 1.61 in hypertensive group, and Mean MCHC was 33.19 with standard deviation of 0.149 in normotensive group.

MCHC in both groups was compared by Unpaired t test. P value was 0.288 which was > 0.05, thus both groups are comparable in terms of MCHC

6)**RDW:** Mean RDW was 55.51 with standard deviation of 19.79 in hypertensive group, and Mean RDW was 53.69 with standard deviation of 6.68 in normotensive group.

RDW in both groups was compared by Unpaired t test. P value was 0.499 which was > 0.05, thus both groups are comparable in terms of RDW

7)**PDW:** Mean PDW was 14.07 with standard deviation of 3.39 in hypertensive group, and Mean PDW was 12.7 with standard deviation of 1.48 in normotensive group.

PDW in both groups was compared by Unpaired t test. P value was **0.004**which was <0.05, thus both groups are **statistically significant** in terms of PDW

8)**TLC:** Mean TLC was 14344.83/cumm with standard deviation of 23774 in hypertensive group, and Mean TLC was 13260.17/cumm with standard deviation of 1732.25 in normotensive group.

TLC in both groups was compared by Unpaired t test. P value was 0.352 which was >0.05, thus both groups are comparable in terms of TLC

9)**POLYMORPHS:** Mean polymorphs was 6588.63 with standard deviation of 3025.6 in hypertensive group, and Mean polymorphs was 9181.67 with standard deviation of 1732.25 in normotensive group.

Polymorphs in both groups was compared by Unpaired t test. P value was<0.0001 which was <0.05, thus both groups are **statistically significant** in terms of polymorphs.

TABLE 11 : COMPARISION OF HEMATOLOGICAL PARAMETERSBETWEEN MOTHER & CORD BLOOD SAMPLES IN PATIENTS OFHYPERTENSIVE DISEASE IN PREGNANCY

Variables	Ν	Hypertensive Mother (Mean±SD)	Cord Blood sample of newborn of hypertensive mother(Mean±SD)
HB	120	12.11±1.48	15.28±3.07
Hematocrit	120	36.35±5.35	46.3±9.91
МСН	120	2.49±0.83	2.5±0.79
MCHC	120	28.52±2.76	34.2±2.91
RDW	120	32.8±1.23	33.34±1.55
TLC	120	48.41±10.53	54.6±14.73
Polymorphs	120	15.63±2.09	13.43±2.69
Platelets	120	11539.67±3496.97	13909.66±16820.78
PDW	120	8471.17±8079.94	7885.6±2790.51

1)HEMOGLOBIN : Mean hemoglobin was 12.11 with standard deviation of 1.48 in mothers group, and Mean hemoglobin was 15.28gm% with standard deviation of 3.07 in cord blood group.

2)HEMATOCRIT: Mean hematocrit was 36.35 with standard deviation of 5.35 in mothers group, and Mean hematocrit was 36.35 with standard deviation of 9.91 in cord blood group.

3)PLATELETS : Mean platelets was 2.49 lakhs with standard deviation of 0.83 in mothers group, and Mean platelets was 2.5 lakhs with standard deviation of 0.79 in cord blood group.

4)MCH: Mean MCH was 28.52 with standard deviation of 2.76 in mothers group, and Mean MCH was 34.2 with standard deviation of 2.91 in cord blood group.

5)MCHC: Mean MCHC was 32.8 with standard deviation of 1.23 in mothers group, and Mean MCHC was 33.34 with standard deviation of 1.55 in cord blood group.

6)**RDW:** Mean RDW was 48.41 with standard deviation of 1.23 in mothers group, and Mean RDW was 54.6 with standard deviation of 14.73 in cord blood group.

7)**PDW:** Mean PDW was 15.63 with standard deviation of 2.09 in mothers group, and Mean PDW was 13.43 with standard deviation of 2.69 in cord blood group.

8)**TLC:** Mean TLC was 11539.67/cumm with standard deviation of 3496 in mothers group, and Mean TLC was 13909/cumm with standard deviation of 16820.78 in cord blood group.

9)**POLYMORPHS :** Mean polymorphs was 8471.17 with standard deviation of 8079.94 in mothers group, and Mean polymorphs was 7885.6 with standard deviation of 2790.51 in cord blood group.

DISCUSSION

during the study period, a total of 120 patients were recruited out of which 60 were hypertensives & 60 were normotensive pregnant women, we compared hematological parameters hypertensive mothers & umbilical cord blood samples to that of normotensive pregnant women.

	Hemoglobin of mother in	Hemoglobin of mother in	P value
	hypetensive group	normotensive group	
Yilmaz et al ⁴ (2016)	11.46± 1.3	11.09±1.22	0.172
Elgari et al ⁷ (2018)	11.9± 1.3	12.6± 1.6	< 0.01
Enagaw et al ¹⁷ (2017)	14.60	14.15	0.005
Sileshi et al 16 (2021)	$14.5{\pm}~1.93$	13.78 ± 2.13	0.027
Al-bahadily et al ³³ 2017	11.62 ± 1.53	11.85 ± 1.23	0.244
Ahmed shariff et al $^{36}(2020)$	8.13±0.5	9.68 ± 0.64	0.05
Neelam jhajharia et al ³⁵	8.80± 2.53	9.728 ± 2.47	< 0.05
(2019)			
Our study	12.03 ± 1.53	12.19± 1.45	0.549

In our study mean hemoglobin of mothers in hypertensive group was (12.03 ± 1.53) as compared to normotensive group (12.19 ± 1.45) and the difference was found to be statistically non- significant (P value 0.549). The study conducted by Yilmaz et al ⁴ reported that mean hemoglobin of mothers inhypertensive group was 11.46 ± 1.3 and in normotensive group was 11.09 ± 1.22 and the difference was statistically non significant (p value0.172). The study conducted by Al-bahadily et al ³³ reported that mean hemoglobin of mothers inhypertensive group was 11.62 ± 1.53 and in normotensive group was 11.85 ± 1.23 and the difference was statistically non significant (p value0.244).

The study conducted by Elgari et al ⁷ showed mean hemoglobin of mothers in hypetensive group was 11.9 ± 1.3 and in normotensive group was 12.6 ± 1.6 which was statistically significant (p value <0.01). the study conducted by Enagaw et al ¹⁷showed mean hemoglobin of mothers in hypetensive group was 14.60 and in normotensive group was 14.15 which was statistically significant (p value 0.005), the study conducted by Sileshi et al ¹⁶ showed mean hemoglobin of mothers in hypetensive group was 14.5 ± 1.93 and in normotensive group was 13.78 ± 2.13 which was statistically significant (p value 0.027), the study conducted by Ahmed shariff et al ³⁶showed mean hemoglobin of mothers in hypetensive group was 9.68 ± 0.64 which was statistically significant (p value 0.05), the study conducted by Neelam jhajharia et al ³⁵showed mean hemoglobin of mothers in hypetensive group was 9.728 ± 2.47 which was statistically significant (p value <0.05).

	Hematocrit of	Hematocrit of	
	mother in	mother in	p value
	hypetensive group	normotensive group	
Yilmaz et al ⁴ (2016)	33.3±4.04	34.32± 3.01	0.970
Elgari et al ⁷ (2018)	35± 3.9	33± 4.9	<0.01
Enagaw et al 17 (2017)	42.7	41.3	< 0.001
Sileshi et al ¹⁶ (2021)	42.45 ± 5.42	40.6± 4.33	0.001
Al-bahadily et al ³³ (2017)	Not done	Not done	Not done
Ahmed shariff et al ³⁶ (2020)	21.1±2.55	27.6 ± 2.05	<0.05
Neelam jhajharia et al ³⁵ (2019)	32.68± 7.29	30.04± 23.8	<0.05
Our study	35.67± 6.22	37.03± 4.27	0.167

 TABLE: 1 Comparison Of hematocrit of mothers between hypertensive and normotensive groups

In our study mean hematocrit of mothers in hypertensive group was (35.67 ± 6.22) as compared to normotensive group (37.03 ± 4.27) and the difference was found to be statistically non- significant (P value 0.167). The study conducted by Yilmaz et al⁴reported that mean hematocrit of mothers inhypertensive group was 33.3 ± 4.04 and in normotensive group was 34.32 ± 3.01 and the difference was statistically non significant (p value0.970).

The study conducted by Elgari et al⁷ showed mean hematocrit of mothers in hypetensive group was 35 ± 3.9 and in normotensive group was 33 ± 4.9 which was statistically significant (p value <0.01). The study conducted by Enagaw et al ¹⁷showed mean hematocrit of mothers in hypetensive group was 42.7 and in normotensive group was 41.3 which was statistically significant (p value <0.001), the study conducted by Sileshi et al ¹⁶ showed mean hematocrit of mothers in hypetensive group was 42.45±5.42 and in normotensive group was 40.6± 4.33 which was statistically significant (p value 0.001), the study conducted by Ahmed shariff et al ³⁶showed mean hematocrit of mothers in hypertensive group was 21.1±2.55 and in normotensive group was 27.6±2.05 which was statistically significant (p value <0.05), the study conducted by Neelam jhajharia et al ³⁵showed mean hematocrit of mothers in hypertensive group was 32.68±7.29 and in normotensive group was 30.04± 23.8 which was statistically significant (p value significant (p value <0.05).

	platelets of mother	platelets of mother	
	in hypetensive	in normotensive	p value
	group	group	
Yilmaz et al ⁴ 2016	2.08±0.64	2.08±0.64	0.031
Elgari et al ⁷ 2018	2.23 ± 7.83	2.28 ± 0.707	0.687
Enagaw et al ¹⁷ 2017	2.7	2.55	0.262
Sileshi et al ¹⁶ 2021	2.5 ± 0.75	2.44 ± 0.82	0.714
Al-bahadily et al ³³ 2017	2.4 ± 0.77	2.41 ± 0.72	0.880
Ahmed shariff et al ³⁶ 2020	1.64±0.34	3.7± 0.46	< 0.05
Neelam jhajharia et al ³⁵ 019	1.31 ± 0.62	3.24 ± 2.3	< 0.0001
Our study	2.44 ± 0.86	2.54 ± 0.8	0.525

 TABLE: 12: Comparison Of platelets of mothers between hypertensive and normotensive groups

In our study mean platelets of mothers in hypertensive group was (2.44 ± 0.86) as compared to normotensive group (2.54 ± 0.8) and the difference was found to be statistically non- significant (P value 0.525). The study conducted by Elgari et al ⁷ showed mean platelets of mothers in hypetensive group was 2.23 ± 7.83 and in normotensive group was 2.28 ± 0.707 which was statistically non significant (p value 0.687), the study conducted by Enagaw et al¹⁷showed mean platelets of mothers in hypetensive group was 2.7 and in normotensive group was 2.55 which was statistically non significant (p value 0.262), the study conducted by Sileshi et al ¹⁶ showed mean platelets of mothers in hypetensive group was 2.5 ± 0.75 and in normotensive group was 2.44 ± 0.82 which was statistically non significant (p value 0.714), the study conducted byAl-bahadily et al³³showed mean platelets of mothers in hypetensive group was 2.4 ± 0.77 and in normotensive group was 2.41 ± 0.72 which was statistically non significant (p value 0.88)

The study conducted by Yilmaz et al⁴reported that mean platelets of mothers inhypertensive group was 2.08 ± 0.64 and in normotensive group was 2.08 ± 0.64 and the difference was statistically significant (p value0.031), the study conducted by Ahmed shariff et al³⁶ showed mean platelets of mothers in hypertensive group was 1.64 ± 0.34 and in normotensive group was 3.7 ± 0.46 which was statistically significant (p value <0.05), the study conducted by Neelam jhajharia et al³⁵showed mean platelets of mothers in hypertensive group was 3.24 ± 2.3 which was statistically significant (p value <0.0001).

	MCH of mother in hypetensive group	MCH of mother in normotensive group	p value
Elgari et al ⁷ 2018	29± 2.7	26± 3.3	< 0.01
Enagaw et al ¹⁷ 2017	29.6± 1.75	29.6± 1.7	0.937
Sileshi et al ¹⁶ 2021	29.8± 2.7	30.4± 2.03	0.118
Al-bahadily et al ³³ 2017	28.67± 3.17	29.18± 3.44	0.277
Our study	28.11±2.9	28.92± 2.57	0.108

Comparison Of MCH of mothers between hypertensive and normotensive groups

In our study mean MCH of mothers in hypertensive group was (28.11 ± 2.9) as compared to normotensive group (28.92 ± 2.57) and the difference was found to be statistically non-significant (P value 0.108) . the study conducted by Enagaw et al ¹⁷showed mean MCH of mothers in hypetensive group was 29.6 ± 1.75 and in normotensive group was 29.6 ± 1.7 which wasstatistically non significant (p value 0.937), the study conducted by Sileshi et al¹⁶showed mean MCH of mothers in hypetensive group was 29.6 ± 1.7 which was statistically non significant (p value 0.937), the study conducted by Sileshi et al¹⁶showed mean MCH of mothers in hypetensive group was 29.8 ± 2.7 and in normotensive group was 29.6 ± 1.7 which was statistically non significant (p value 0.118), the study conducted by Al-bahadily et al ³³showed mean platelets of mothers in hypetensive group was 28.67 ± 3.17 and in normotensive group was 29.18 ± 3.44 which was statistically non significant (p value0.277).

The study conducted by Elgari et al ⁷ showed mean MCH of mothers in hypetensive group was 29 ± 2.7 and in normotensive group was 26 ± 3.3 which was statistically significant (p value <0.01),

	MCHC of mother in hypetensive group	MCHC of mother in normotensive group	p value
Elgari et al ⁷ 2018	33±1.3	32± 1.6	< 0.01
Enagaw et al ¹⁷ 2017	34.27± 1.17	34.7± 1.13	0.003
Sileshi et al ¹⁶ 2021	34± 1.92	34.35± 3.95	0.192
Al-bahadily et al ³³ 2017	32.97± 1.83	32.81± 1.27	0.48
Our study	32.85± 1.47	32.76± 0.95	0.696

 TABLE: 13, Comparison of MCHC of mothers between hypertensive and normotensive groups

In our study mean MCHC of mothers in hypertensive group was 32.85 ± 1.47 as compared to normotensive group 32.76 ± 0.95 and the difference was found to be statistically non-significant (P value 0.696), the study conducted by Sileshi et al¹⁶ showed mean MCHC of mothers in hypetensive group was 34 ± 1.92 and in normotensive group was 34.35 ± 3.95 which was statistically non significant (p value 0.192), the study conducted by Al-bahadily et al ³³showed mean MCHC of mothers in

hypetensive group was 32.97 ± 1.83 and in normotensive group was 32.81 ± 1.27 which was statistically non significant (p value0.48).

The study conducted by Enagaw et al ¹⁷showed mean MCHC of mothers in hypetensive group was 34.27 ± 1.17 and in normotensive group was 34.7 ± 1.13 which was statistically significant (p value0.003), the study conducted by Elgari et al ⁷ showed mean MCHC of mothers in hypetensive group was 33 ± 1.3 and in normotensive group was 32 ± 1.6 which was statistically significant (p value <0.01),

	RDW of mother in	RDW of mother in	р
	hypetensive group	normotensive group	value
Elgari et al ⁷ 2018	14± 2	14± 2	< 0.01
Yilmaz et al ⁴ 2016	15.23 ± 1.96	14.48 ± 1.7	0.021
Enagaw et al ¹⁷ 2017	43.19± 2.62	42.9 ± 4.42	< 0.001
Sileshi et al ¹⁶ 2021	43.9±5.3	42.03± 2.85	0.063
Our study	47.99±11.65	$48.83{\pm}9.37$	0.438

TABLE 14: Comparison Of RDW of mothersbetween hypertensive andnormotensive groups

In our study mean RDW of mothers in hypertensive group was 47.99 ± 11.65 as compared to normotensive group 48.83 ± 9.37 and the difference was found to be statistically non-significant (P value 0.438), the study conducted by Sileshi et al ¹⁶ showed mean RDW of mothers in hypetensive group was 43.9 ± 5.3 and in normotensive group was 42.03 ± 2.85 which was statistically non significant (p value 0.063).

The study conducted by Enagaw et al ¹⁷showed mean RDW of mothers in hypetensive group was 43.19 ± 2.62 and in normotensive group was 42.9 ± 4.42 which was statistically significant (p value<0.001), the study conducted by Elgari et al⁷ showed mean RDW of mothers in hypetensive group was 14 ± 2 and in normotensive group was 14 ± 2 which was statistically significant (p value <0.01), the study conducted by Yilmaz et al ⁴showed mean RDW of mothers in hypetensive group was 15.23 ± 1.96 and in normotensive group was 14.48 ± 1.7 which was statistically significant (p value 0.021).

	PDW of mother in	PDW of mother in	n voluo
	hypetensive group	normotensive group	p value
Enagaw et al ¹⁷ 2017	12.6± 1.8	12± 1.7	0.007
Our study	15.35± 2.23	15.91 ± 1.92	0.146

TABLE 15: Comparison Of PDW of mothersbetween hypertensive andnormotensive groups

In our study mean PDW of mothers in hypertensive group was 15.35 ± 2.23 as compared to normotensive group 15.91 ± 1.92 and the difference was found to be statistically non-significant (P value 0.146).

The study conducted by Enagaw et al¹⁷showed mean PDW of mothers in hypetensive group was 12.6 ± 1.8 and in normotensive group was 12 ± 1.7 which was statistically significant (p value 0.007),

	TLC of mother in	TLC of mother in	p value
	hypetensive group	normotensive group	p value
Yilmaz et al ⁴ 2016	9.942± 2.5	9.79 ± 2.25	0.661
Elgari et al ⁷ 2018	10.3± 4.4	10.1± 3.4	0.740
Enagaw et al ¹⁷ 2017	6.90	5.2	< 0.001
Sileshi et al ¹⁶ 2021	6.52± 3.08	5.29 ± 2.27	0.0001
Al-bahadily et al ³³ 2017	12.8± 4.2	12.69 ± 4.28	0.859
Ahmed shariff et al ³⁶ 2020	15.9± 2.09	7.8±1.7	<0.05
Neelam jhajharia et al ³⁵ 2019	16.34± 1.99	11.52 ± 4.83	<0.05
Our study	12.21± 3.48	10.86± 3.4	0.033

TABLE: 16, Comparison of TLC of mothers between hypertensive and normotensive groups

In our study mean TLC of mothers in hypertensive group was 12.21 ± 3.48 as compared to normotensive group 10.86 ± 3.4 and the difference was found to be statistically significant (P value 0.033), the study conducted by Enagaw et al ¹⁷showed mean TLC of mothers in hypetensive group was 6.90 and in normotensive group

was 5.2 which was statistically significant (p value <0.001). the study conducted by Sileshi et al ¹⁶ showed mean TLC of mothers in hypetensive group was 6.52 ± 3.08 and in normotensive group was 5.29 ± 2.27 which was statistically significant (p value 0.0.0001), the study conducted by Ahmed shariff et al³⁶showed mean TLC of mothers in hypetensive group was 15.9 ± 2.09 and in normotensive group was 7.8 ± 1.7 which was statistically significant (p value <0.05), the study conducted by Neelam jhajharia et al ³⁵showed mean TLC of mothers in hypetensive group was 11.52 ± 4.83 which was statistically significant (p value <0.05).

The study conducted by Yilmaz et al⁴reported that mean TLC of mothers inhypertensive group was 9.942 ± 2.5 and in normotensive group was 10.1 ± 3.4 and the difference was statistically non significant (p value0.661), the study conducted by Elgari et al ⁷ showed mean TLC of mothers in hypetensive group was 10.3 ± 4.4 and in normotensive group was 12.6 ± 1.6 which was statistically non significant (p value 0.740). The study conducted by Al-bahadily et al³³ reported that mean TLC of mothers inhypertensive group was 12.8 ± 4.2 and in normotensive group was 12.69 ± 4.28 and the difference was statistically non significant (p value 0.740).

 TABLE: 16, Comparison Of Neutrophils of mothers between hypertensive and normotensive groups

	Neutrophils of mother in hypetensive group	Neutrophils of mother in normotensive group	p value
Elgari et al ⁷ 2018	7.19± 1.11	7.74 ± 1.36	< 0.001
Al-bahadily et al ³³ 2017	9.76± 3.65	10.25 ± 4.07	0.371
Our study	7.69± 2.39	9.258± 1.11	0.293

In our study mean neutrophils of mothers in hypertensive group was 7.69 ± 2.39 as compared to normotensive group 9.258 ± 1.11 and the difference was found to be statistically non significant (P value 0.293). The study conducted by Al-bahadily et al³³reported that mean neutrophils of mothers inhypertensive group was 9.76 ± 3.65 and in normotensive group was 10.25 ± 4.07 and the difference was statistically non significant (p value0.371).

The study conducted by Elgari et al^7 showed mean neutrophils of mothers in hypetensive group was 7.19 ± 1.11 and in normotensive group was 7.74 ± 1.36 which was statistically significant (p value <0.001).

CORD BLOOD SAMPLES

TABLE 17, : Comparison Of	hemoglobin of cord	blood between	hypertensive
and Normotensive groups			

	Hemoglobin of	Hemoglobin of cord	
	cord blood in	blood in	P value
	hypetensive group	normotensive group	
Okoye H C et al ³ 2016	16.6± 3.1	14.8± 2.3	< 0.001
Elgari et al ⁷ 2018	14.3±1.6	14.6 ± 1.7	0.252
Tiwari et al ³¹ 2021	15.88± 2.68	15.65 ± 5.04	0.776
Al -bahadily et al ³³ 2017	17.27± 2.29	16.86± 1.33	0.132
Jaiom dagar et al ³⁴ 2016	15.7	15.7	0.587
K Mouna et al ³² 2017	17.6± 1.17	14.6 ± 0.65	< 0.001
Aliabad et al ³⁰ 2022	15.1±1.8	15.1± 1.8	0.07
Omoniyi et al ²⁹ 2020	Not done	Not done	Not done
Our study	16.11± 3.29	14.44 ± 2.59	0.002

In our study mean hemoglobin of cord blood in hypertensive group was higher (16.11 \pm 3.29) as compared to normotensive group (14.44 \pm 2.59) and the difference was found to be statistically significant (P value 0.002). The study conducted by Okoye H C et al³reported that mean hemoglobin of cord blood inhypertensive group was 16.6 \pm 3.1 and in normotensive group was 14.8 \pm 2.3 and the difference was statistically significant (p value<0.001). The study conducted by K Mouna et al³² reported that mean hemoglobin of cord blood inhypertensive group was 17.6 \pm 1.17and in normotensive group was 14.6 \pm 0.65and the difference was statistically significant (p value<0.001).

The study conducted by Elgari et al⁷showed mean hemoglobin of cord blood in hypetensive group was $14.3 \pm 1.6\%$ and in normotensive group was 14.6 ± 1.7 which was statistically non-significant. The study conducted by Tiwari et al ³¹showed mean hemoglobin of cord blood in hypetensive group was 15.88 ± 2.68 and in

normotensive group was 15.65 ± 5.04 which was statistically non-significant. The study conducted by Al -bahadily et al ³³ showed mean hemoglobin of cord blood in hypetensive group was 17.27 ± 2.29 and in normotensive group was 16.86 ± 1.33 which was statistically non-significant. The study conducted by Jaiom dagar et al ³⁴showed mean hemoglobin of cord blood in hypetensive group was 15.7 and in normotensive group was 15.7 which was was statistically non-significant. The study conducted by Aliabad et al ³⁰showed mean hemoglobin of cord blood in hypetensive group was 15.1 ± 1.8 and in normotensive group was 15.1 ± 1.8 which was statistically non-significant.

TABLE 18: Comparison Of hematocrit of cord blood between hypertensive andnon hypertensive groups

	Hematocrit of cord blood in	Hematocrit of cord blood in	P value
	hypetensive group	normotensive group	
Okoye H C et al ³ 2016	51.1±9.0	45.5±7.5	<0.001
Elgari et al ⁷ 2018	44± 5.1	42 ± 5.6	< 0.05
Tiwari et al ³¹ 2021	48.68 ± 6.98	48.63±15.17	0.983
Al -bahadily et al ³³ 2017	Not compared	Not compared	Not compared
Jaiom dagar et al ³⁴ 2016	51.82	51.57	0.945
K Mouna et al 2017	53±3.6	45.1±1.7	< 0.0001
Aliabad et al ³⁰ 2022	45.2±4.6	44.5± 6.1	0.62
Omoniyi et al ²⁹ 2020	48.4± 9.1	45.8±7	0.013
Our study	46.33±12.58	46.27± 6.3	0.975

In our study mean hematocrit of cord blood in hypertensive group was higher (46.33 \pm 12.58) as compared to normotensive group (46.27 \pm 6.3) and the difference was comparable (P value 0.975). The study conducted by Tiwari et al³¹showed mean hematocrit of cord blood in hypetensive group was 48.68 \pm 6.98 and in normotensive group was 48.63 \pm 15.17 which was lower than that observed in our study and was statistically non-significant(p value 0.983), The study conducted by Jaiom dagar et ³⁴ alshowed mean hematocrit of cord blood in hypetensive group was 51.82 and in normotensive group was51.57which was lower than that observed in our study and was statistically non-significant(p value 0.983), The study conducted by Aliabad et al ³⁰showed mean hematocrit of cord blood in hypetensive group was 45.2 \pm 4.6 and in normotensive group was44.5 \pm 6.1which was lower than that observed in our study and was statistically non-significant(p value 0.983).

The study conducted by Okoye H C et al³reported that mean hematocrit of cord blood inhypertensive group was 51.1 ± 9.0 and in normotensive group was 45.5 ± 7.5 and the difference was statistically significant (p value<0.001),). The study conducted by K Mouna et al ³² reported that mean hematocrit of cord blood inhypertensive group was $53\pm$ 3.6and in normotensive group was $45.1\pm$ 1.7and the difference was statistically significant (p value<0.001).The study conducted by Elgari et al ⁷ showed mean hematocrit of cord blood in hypetensive group was $44\pm$ 5.1and in normotensive group was $42\pm$ 5.6 and difference was statistically significant(p value<0.05). The study conducted by Omoniyi et al ²⁹showed mean hematocrit of cord blood in hypetensive group was $48.4\pm$ 9.1and in normotensive group was $45.8\pm$ 7 and difference was statistically significant(p value0.013).

	MCH of cord blood in hypetensive group	MCH of cord blood in normotensive group	P value
Okoye H C et al ³ 2016	Not compared	Not compared	Not compared
Elgari et al 7 2018	35± 2.9	32 ± 4.2	< 0.01
Tiwari et al ³¹ 2021	32.73±3.7	32.54 ± 4.95	0.823
Al -bahadily et al ³³ 2017	35.64± 2.31	35.64± 2.31	0.480
Jaiom dagar et al ³⁴ 2016	36.13	35.32	0.052
K Mouna et al ³² 2017	35± 1.25	35.2± 2.01	0.406
Aliabad et al ³⁰ 2022	35.6± 2.0	33.6± 3.6	0.01
Omoniyi et al ²⁹ 2020	35.5± 4.7	35.1± 3.4	0.527
Our study	34.36± 3.52	34.04± 2.16	0.553

TABLE : 19, Comparison Of MCH of cord blood between hypertensive and non hypertensive groups

In our study mean MCH of cord blood in hypertensive group was (34.36 ± 3.52) as compared to normotensive group (34.04 ± 2.16) and the difference was comparable (P value 0.553). The study conducted by Tiwari et al ³¹ showed mean MCH of cord blood in hypetensive group was 32.73 ± 3.7 and in normotensive group was 32.54 ± 4.95 which was statistically nonsignificant(p value 0.823), The study conducted by Al -bahadily et al ³³showed mean MCH of cord blood in hypetensive group was 35.64 ± 2.31 and in normotensive group was 35.64 ± 2.31 which was statistically non-significant(p value 0.480), The study conducted by K Mouna et al ³²showed mean MCH of cord blood in hypetensive group was 35.2 ± 2.01 which was statistically non-significant(p value 0.406), The study conducted by Omoniyi et al ²⁹showed mean MCH of cord blood in hypetensive group was 35.5 ± 4.7 and in normotensive group was 35.1 ± 3.4 which was statistically non-significant(p value 0.527).

The study conducted by Elgari et al ⁷ showed mean MCH of cord blood in hypetensive group was 35 ± 2.9 and in normotensive group was 32 ± 4.2 and difference was statistically significant(p value<0.01), The study conducted by Jaiom dagar et al ³⁴showed mean MCH of cord blood in hypetensive group was 36.13 and in normotensive group was 35.32 and difference was statistically significant(p value0.052), The study conducted by Aliabad et al ³⁰ showed mean MCH of cord blood in hypetensive group was 35.6 ± 2.0 and in normotensive group was $33.6\pm$ 3.6 and difference was statistically significant(p value0.01),

	MCHC of cord blood in hypetensive group	MCHC of cord blood in normotensive group	P value
Okoye H C et al ³ 2016	Not done	Not done	Not done
Elgari et al ⁷ 2018	32± 4.2	32 ± 1.8	0.92
Tiwari et al ³¹ 2021	33.05±1.41	33.39± 1.42	0.232
Al -bahadily et al ³³ 2017	34.16± 1.49	33.71± 1.33	0.0290
Jaiom dagar et al ³⁴ 2016	33.44	32.46	0.951
K Mouna et al ³² 2017	32.85 ± 0.83	33.37±1.02	0.08
Aliabad et al ³⁰ 2022	32.3± 0.8	32.1± 1.1	0.56
Omoniyi et al ²⁹ 2020	32.1± 3.6	32.7± 2.5	0.118
Our study	33.49± 1.61	33.19± 1.49	0.288

 TABLE: 20, Comparison Of MCHC of cord blood between hypertensive and non

 hypertensive groups

In our study mean MCHC of cord blood in hypertensive group was (33.49 ± 1.61) as compared to normotensive group (33.19 ± 1.49) and the difference was comparable (P value 0.288), the study conducted by Elgari et al ⁷ showed mean MCHC of cord blood in hypetensive group was 32 ± 4.2 and in normotensive group was 32 ± 1.8 and difference was comparable (p value 0.92). The study conducted by Tiwari et al ³¹ showed mean MCHC of cord blood in hypetensive group was 33.19 ± 1.49 which was statistically non-significant(p

value 0.232), The study conducted by Jaiom dagar et al ³⁴showed mean MCHC of cord blood in hypetensive group was 33.44 and in normotensive group was32.46 which was statistically non-significant(p value 0.951), The study conducted by K Mouna et al ³²showed mean MCHC of cord blood in hypetensive group was $32.85\pm$ 0.83 and in normotensive group was $33.37\pm$ 1.02which was statistically non-significant(p value 0.08), The study conducted by Aliabad et al ³⁰showed mean MCHC of cord blood in hypetensive group was $32.1\pm$ 1.1which was statistically non-significant(p value 0.56), The study conducted by Omoniyi et al ²⁹showed mean MCHC of cord blood in hypetensive group was $32.1\pm$ 3.6and in normotensive group was $32.7\pm$ 2.5which was statistically non-significant(p value 0.118).

The study conducted by Al -bahadily et al 33 showed mean MCHC of cord blood in hypetensive group was 34.16 ± 1.49 and in normotensive group was 33.71 ± 1.33 which was statistically significant(p value 0.0290).

	RDW of cord	RDW of cord blood	
	blood in	in normotensive	p value
	hypetensive group	group	
Elgari et al ⁷ 2018	19± 0.01	18 ± 1.8	< 0.01
Aliabad et al ³⁰ 2022	17.3±1.2	12.1±1.1	< 0.0001
Our study	55.51±19.79	53.69± 6.68	0.499

 TABLE: 21, Comparison of RDW of cord blood between hypertensive and non

 hypertensive groups

In our study mean RDW of cord blood in hypertensive group was (55.51 ± 19.79) as compared to normotensive group (53.69 ± 6.68) and the difference was comparable (P value 0.499).

The study conducted by Elgari et al⁷ showed mean RDW of cord blood in hypetensive group was 19 ± 0.01 and in normotensive group was 18 ± 1.8 and difference was statistically significant (p value<0.01). The study conducted by Aliabad et al ³⁰ showed mean RDW of cord blood in hypetensive group was $17.3\pm$ 1.2 and in normotensive group was 12.1 ± 1.1 and difference was statistically significant (p value<0.0001).

	TLC of cord blood in hypetensive	TLC of cord blood in normotensive	P value
	group	group	
Okoye H C et al ³ 2016	11.1± 3.2	10.6± 4.3	0.443
Elgari et al ⁷ 2018	11.9± 1.9	12.3 ± 4.2	0.7
Tiwari et al ³¹ 2021	10.0± 17.7	11.7 ± 6.1	0.516
Al -bahadily et al ³³ 2017	16.14± 5.13	20.58± 13.12	0.002
Jaiom dagar et ³⁴ 2016	15.314	15.617	Not significant
K Mouna et al ³² 2017	$8.98{\pm}0.818$	$15.38{\pm}0.992$	< 0.001
Aliabad et al ³⁰ 2022	8.4± 3.2	11.3±3.4	0.002
Omoniyi et al ²⁹ 2020	10.9	11.4	0.198
Our study	14.34± 23.7	13.2± 16.8	0.725

 TABLE 22: Comparison Of TLC of cord blood between hypertensive and non

 hypertensive groups

In our study mean TLC of cord blood in hypertensive group was higher (14.34 \pm 23.7) as compared to normotensive group (13.2 \pm 16.8) and the difference was comparable (P value 0.725). The study conducted by Okoye H C et al ³ reported that mean TLC of cord blood inhypertensive group was 11.1 \pm 3.2 and in normotensive group was 10.6 \pm 4.3 and the difference was comparable (p value 0.443). The study conducted by Elgari et al ⁷ showed mean TLC of cord blood in hypetensive group was 11.9 \pm 1.9 and in normotensive group was 12.3 \pm 4.2 which was comparable (p value 0.7), The study conducted by Tiwari et al ³¹ showed mean TLC of cord blood in hypetensive group was 10.0 \pm 17.7 and in normotensive group was 11.7 \pm 6.1 which was statistically non-significant(p value 0.516), The study conducted by Jaiom dagar et al ³⁴

showed mean TLC of cord blood in hypetensive group was 15.314 and in normotensive group was 15.617 which was statistically non-significant, The study conducted by Omoniyi et al ²⁹ showed mean TLC of cord blood in hypetensive group was 10.9 and in normotensive group was 11.4 which was statistically non-significant(p value 0.198),

The study conducted by Al -bahadily et al ³³showed mean TLC of cord blood in hypetensive group was 16.14 ± 5.13 and in normotensive group was 20.58 ± 13.12 which was statistically significant(p value 0.002),The study conducted by K Mouna et al ³²showed mean TLC of cord blood in hypetensive group was 8.98 ± 0.818 and in normotensive group was 15.38 ± 0.992 which was statisticallysignificant(p value <0.001),The study conducted by Aliabad et al ³⁰ showed mean TLC of cord blood in hypetensive group was 8.4 ± 3.2 and in normotensive group was 11.3 ± 3.4 which was statisticallysignificant(p value 0.002).

	NEUTROPHILS of cord blood in	NEUTROPHILS of cord blood in	P value
	hypetensive group	normotensive group	
Okoye H C et al ³ 2016	4.5± 3.1	5.4 ± 2.7	0.033
Elgari et al ⁷ 2018	44.9±15.3	53.2±12.5	< 0.001
Tiwari et al ³¹ 2021	$60.95{\pm}~18.5$	67.02 ± 12.29	0.056
Al -bahadily et al ³³ 2017	8.49± 3.76	8.7± 3.92	0.709
Jaiom dagar et al ³⁴ 2016	5.06	8.261	< 0.001
K Mouna et al ³² 2017	45.9± 2.12	52.2 ± 1.72	< 0.001
Aliabad et al ³⁰ 2022	3.9± 2.4	5.7±2.9	0.01
Omoniyi et al ²⁹ 2020	4.763	5.451	0.023
Our study	6.588± 3.02	9.18± 1.73	< 0.0001

 TABLE:
 23:
 Comparison
 Of
 NEUTROPHILS
 of
 cord
 blood
 between

 hypertensive and non hypertensive groups

In our study mean neutrophils of cord blood in hypertensive group was (6.588 ± 3.02) ascompared to normotensive group (9.18 ± 1.73) and the difference was statistically significant (P value <0.0001). The study conducted by Okoye H C et al ³showed mean neutrophils of cord blood in hypetensive group was 4.5 ± 3.1 and in normotensive group was 5.4 ± 2.7 which was statistically significant (p value 0.033), The study conducted by Elgari et al ⁷showed mean neutrophils of cord blood in hypetensive group was 53.2 ± 12.5 which was statistically significant(p value <0.001), The study conducted by Tiwari et al ³¹showed mean neutrophils of cord blood in hypetensive group was 60.95 ± 18.5 and

in normotensive group was 67.02 ± 12.29 which was statisticallysignificant(p value 0.056), The study conducted by Jaiom dagar et al ³⁴showed mean neutrophils of cord blood in hypetensive group was 5.06 and in normotensive group was 8.261 which was statisticallysignificant(p value <0.001), The study conducted by K Mouna et al ³²showed mean neutrophils of cord blood in hypetensive group was 45.9 ± 2.12 and in normotensive group was 52.2 ± 1.72 which was statisticallysignificant(p value <0.001), The study conducted by Aliabad et al ³⁰showed mean neutrophils of cord blood in hypetensive group was 5.7 ± 2.9 which was statisticallysignificant(p value 0.01), The study conducted by Omoniyi et al ²⁹showed mean neutrophils of cord blood in hypetensive group was 4.763 and in normotensive group was 5.451 which was statisticallysignificant(p value 0.023)

The study conducted by Al -bahadily et al 33 reported that mean neutrophils of cord blood inhypertensive group was 8.49 ± 3.76 and in normotensive group was 8.7 ± 3.92 and the difference was comparable (p value 0.709).

	platelets of cord	Platelets of cord	
	blood in	blood in	P value
	hypetensive group	normotensive group	
Okoye H C et al ³ 2016	1.57 ± 1.18	2.53 ± 0.88	< 0.001
Elgari et al ⁷ 2018	1.75 ± 1.18	2.53±1.19	< 0.001
Tiwari et al ³¹ 2021	1.01 ± 0.8	2.28 ± 1.03	< 0.001
Al -bahadily et al ³³ 2017	$2.46{\pm}~0.81$	$2.81{\pm}0.92$	0.007
Jaiom dagar et al ³⁴ 2016	1.42	2.09	< 0.001
K Mouna et al ³² 2017	0.942 ± 0.1	2.02 ± 0.31	< 0.001
Aliabad et al ³⁰ 2022	1.57 ± 0.7	2.62 ± 0.62	< 0.0001
Omoniyi et al ²⁹ 2020	1.73	2.08	0.047
Our study	2.32 ± 0.91	2.69 ± 0.58	0.009

TABLE 24: Comparison Of PLATELETSof cord blood between hypertensiveand non hypertensive groups

In our study mean platelet of cord blood in hypertensive group was (2.32 ± 0.91) as compared to normotensive group (2.69 ± 0.58) and the difference was found to be statistically significant (P value **0.009**). The study conducted by Okoye H C et al³ reported that mean platelet of cord blood inhypertensive group was 1.57 ± 1.18 and in

normotensive group was 2.53 ± 0.88 and the difference was statistically significant (p value < 0.001). the study conducted by Elgari et al⁷ showed mean platelet of cord blood in hypetensive group was 1.75 ± 1.18 and in normotensive group was $2.53 \pm$ 1.19 which was statistically significant (p value <0.001), the study conducted by Tiwari et al³¹ showed mean platelet of cord blood in hypetensive group was $1.01\pm$ 0.8 and in normotensive group was 2.28 ± 1.03 which was statistically significant (p value <0.001), the study conducted by Al -bahadily et al³³showed mean platelet of cord blood in hypetensive group was 2.46 ± 0.81 and in normotensive group was 2.81 ± 0.92 which was statistically significant (p value 0.007), the study conducted by Jaiom dagar et al ³⁴showed mean platelet of cord blood in hypetensive group was 1.42 and in normotensive group was 2.09 which was statistically significant (p value <0.001), the study conducted by K Mouna et al ³²showed mean platelet of cord blood in hypetensive group was 0.942 ± 0.1 and in normotensive group was 2.02 ± 0.31 which was statistically significant (p value <0.001), the study conducted by Omoniyi et al ²⁹showed mean platelet of cord blood in hypetensive group was 1.73 and in normotensive group was 2.08 which was statistically significant (p value 0.047)

TABLE 25: Comparison Of PDW of cord blood between hypertensive and nonhypertensive groups

	PDW of cord blood in hypetensive group	PDW of cord blood in normotensive group	p value
Aliabad et al ³⁰ 2022	16.0± 3.5	11.7 ± 0.8	< 0.0001
Our study	14.07± 3.39	12.7 ± 1.48	0.004

In our study mean platelet of cord blood in hypertensive group was (14.07 ± 3.39) as compared to normotensive group (12.7 ± 1.48) and the difference was found to be statistically significant (P value **0.004**). The study conducted by Aliabad et al³⁰reported that mean platelet of cord blood inhypertensive group was 16.0 ± 3.5 and in normotensive group was 11.7 ± 0.8 and the difference was statistically significant (p value<0.0001).

COMPARISION OF HEMATOLOGICAL PARAMETERS IN SPECTRUM OF HYPERTENSIVE DISORDERS OF PREGNANCY

Our study showed that there is no significant difference in hematological profile like hemoglobin, hematocrit, platelets, total leucocyte count, RDW, MCHC, with severity of hypertensive disorders of pregnancy.

COMPARISION OF NEONATAL COMPLICATIONS BETWEEN HYPERTENSIVE & NORMOTENSIVE GROUPS

Need for phototherapy is higher in newborns of hypertensive group as that of normotensive group, due to higher rates of prematurity in hypertensive group, rate of polycythemia is significantly higher in hypertensive group than that of normotensive group

COMPARISION OF NICU ADMISSIONS BETWEEN HYPERTENSIVE & NORMOTENSIVE GROUPS

NICU admissions in hypertensive group was (25%) significantly higher in newborns of hypertensive group than that of normotensive group, explained by higher rates of prematurity in hypertensive group.

GESTATIONAL AGE COMPARISION BETWEEN HYPERTENSIVE & NORMOTENSIVE GROUP

Preterm deliveries were significantly higher in hypertensive group than that of normotensive group, due to need for earlier intervention for raised BP records

STRENGTHS:

- 1) It's is prospective cohort study
- 2) Less bias due to prospective evaluation of exposure.

- 3) We compared most of the hematological parameters in spectrum of hypertensive disorders of pregnancy, while very few studies have compared all the parameters.
- 4) Less chances of missing cases and dara.

LIMITATION: Some limitations of the study should be acknowledged

- 1) study conducted during COVID breakdown, thus making less sample,
- 2) study duration was short
- This study reflecting percentage of hypertensive disorders of pregnancy in our hospital & not all cities in our country.
- Some possible confounding factors like- iron intake, viral infections, possible immunological disease have the potention to effect the results, which were not considered.

CONCLUSION

- Study was conducted in the Department of Obstetrics and Gynecology and Department of Neonatology, AIIMS Jodhpur from April 2021 to October 2022
- 2) This was a Prospective cohort study, comparing effect of hypertensive disorders of pregnancy on hematological profile between hypertensive & normotensive pregnant womens, also hematological profile of umbilical cord blood of hypertensive & normotensive pregnant women.
- 120 patients were recruited to particicpate in study, out of which 60 were hypertensive & 60 were normotensive pregnant women.
- 4) The mean total leucocyte count was significantly higher in mothers of hypertensive group than that of normotensive group. which suggests an imbalance in immune cells & inflammatory response in patients with hypertensive disorders of pregnancy.
- 5) Hemoglobin , hematocrit , MCH, MCHC, RDW, platelets, PDW, showed no statistical difference between hypertensive & normotensive groups. therefore cohort study with longer duration of study period required for further evaluation
- 6) The mean hemoglobin & mean PDW were significantly higher in umbilical cord blood of hypertensive group than that of normotensive group.
- 7) The mean platelet count & mean neutrophil count were significantly lower in umbilical cord blood of hypertensive group than that of normotensive group, thus neutropenia & thrombocytopenia during the early neonatal period should be closely monitored so as to facilitate early detection of sepsis & bleeding tendencies in order to improve morbidity & mortality among newborns
- 8) Hematocrit, MCH, MCHC, RDW, TLC showed no statistical difference between umbilical cord blood of hypertensive group than that of normotensive group .
- 9) The rates of prematurity & NICU admissions were significantly higher in newborns mothers of hypertensive group than that of normotensive group.
- 10) Polycythemia, TTNB, birth asphyxia showed no statistical difference between hypertensive & normotensive group .

11) Hemoglobin, platelet count, RDW, hematocrit, TLC showed no statistical difference in spectrum of hypertensive disorders of pregnancy, thus there is no correlation with severity of disease from this parameters

BIBLIOGRAPHY

- 1. Verma N, Verma N.Maheshwari A. Prevalence of hypertension in pregnancy in Northern part of India . J Hypertensin 2018, Oct vol 36 311-312
- Moraes D, Munhoz TP, Pinheiro da Costa BE, Hentschke MR, Sontag F, Silveira Lucas L, Gadonski G, Antonello IC, Poli-deFigueiredo CE. Immature platelet fraction in hypertensive pregnancy. Platelets. 2016;27(4):333–37
- Okoye H C , Eweputanna L I, Korubo K I, Ejele O A. Effects of maternal hypertension on the neonatal haemogram in southern Nigeria: A case-control study. Malawi Med J. 2016 Dec;28(4):174-178.
- 4. Yilmaz ZV, Yilmaz E, Kucukozkan T. Red blood cell distribution width: A simple parameter in preeclampsia. Pregnancy Hypertens. 2016;6(4):285–87
- Abdullahi H, et al. Red blood cell distribution width is not correlated with preeclampsia among pregnant Sudanese women. Diagn Pathol. 2014. PMID: 24499498
- Viana-Rojas J A , Alejandro Rosas-Cabral, Prieto-Macías J, Terrones-Saldívar, M A, Arcos-Noguez P,et. al. Relation of red cell distribution width and mean platelet volume with the severity of preeclampsia. Rev Med Inst Mex Seguro Soc. Mar-Apr 2017;55(2):176-181.
- 7. Elgari M M, Khabour O F, Alha S M. Correlations between changes in hematological

indices of mothers with preeclampsia and umbilical cord blood of newborns. Clin & Exp Hypertension 2019,41 (1) 58-61.

- 8. Rahim R, Nahar K, Khan IA. Platelet count in 100 cases of pregnancy induced hypertension. Mymensingh medical journal: MMJ. 2010 Jan 1;19(1):5-9.
- Tejeswini KK, Anitha GS, Nandagopal KM. Platelet count as a prognostic indicator in pregnancy induced hypertension. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2016 Apr 1;5(4):1036-47.

- Thalor N, Singh K, Pujani M, Chauhan V, Agarwal C, Ahuja R. A correlation between platelet indices and preeclampsia. Hematology, transfusion and cell therapy. 2019 Jun 10;41:129-33.
- Dadhich S, Agrawal S, Soni M, Choudhary R, Jain R, Sharma S, Saini SL. Predictive value of platelet indices in development of preeclampsia. J SAFOG. 2012 Jan;4(1):17-21.
- 12. Bawore SG, Adissu W, Niguse B, Larebo YM, Ermolo NA, Gedefaw L. A pattern of platelet indices as a potential marker for prediction of pre-eclampsia among pregnant women attending a Tertiary Hospital, Ethiopia: A case-control study. Plos one. 2021 Nov 9;16(11):e0259543.
- 13. Abumohsen H, Bustami B, Almusleh A, Yasin O, Farhoud A, Safarini O, Thabaleh A, Sukhon M, Nazzal Z, Damiri B. The Association Between High Hemoglobin Levels and Pregnancy Complications, Gestational Diabetes and Hypertension, Among Palestinian Women. Cureus. 2021 Oct 17;13(10).
- 14. Taeubert MJ, Wiertsema CJ, Vermeulen MJ, Quezada-Pinedo HG, Reiss IK, Muckenthaler MU, Gaillard R. Maternal Iron Status in Early Pregnancy and Blood Pressure Throughout Pregnancy, Placental Hemodynamics, and the Risk of Gestational Hypertensive Disorders. The Journal of nutrition. 2022 Feb;152(2):525-34.
- 15. Khoigani MG, Goli S, HasanZadeh A. The relationship of hemoglobin and hematocrit in the first and second half of pregnancy with pregnancy outcome. Iranian journal of nursing and midwifery research. 2012 Feb;17(2 Suppl1):S165.
- 16. Sileshi B, Urgessa F, Wordofa M. A comparative study of hematological parameters between hypertensive and normotensive individuals in Harar, eastern Ethiopia. PloS one. 2021 Dec 7;16(12):e0260751.
- 17. Enawgaw B, Adane N, Terefe B, Asrie F, Melku M. A comparative crosssectional study of some hematological parameters of hypertensive and normotensive individuals at the university of Gondar hospital, Northwest Ethiopia. BMC hematology. 2017 Dec;17(1):1-

- Babu KR, Solepure A, Shaikh R. Comparison of hematological parameters in primary hypertensives and normotensives of sangareddy. Int J Biomed Res. 2015;6(5):309-15.
- Erhabor O, Shehu A, Erhabor T, Adias TC, Iwueke IP. Some Full Blood Count Parameters among Hypertensive Patients Attending Specialist Hospital, Sokoto, Nigeria. Open Journal of Blood Diseases. 2019 Oct 23;9(04):77.
- 20. Eziuzo CI, Chinko BC, Dapper DV. Comparative assessment of some white blood cell and platelet parameters among normotensive and hypertensive subjects in Port Harcourt, Nigeria. Nigerian Medical Journal: Journal of the Nigeria Medical Association. 2017 Jul;58(4):131.
- 21. Aydin C, Alpsoy Ş, Engin M, YAVUZ S. Is there a difference between normotensive and hypertensive patients in terms of blood parameters and cardiovascular diseases?. The European Research Journal. 2021;7(6):593-600.
- 22. Bhutani N, Jethani V, Jethani S, Ratwani K. Coagulation profile and platelet parameters in pregnancy induced hypertension cases and normotensive pregnancies: A cross-sectional study. Annals of Medicine and Surgery. 2022 Aug 1;80:104124.
- Dadhich S, Agrawal S, Soni M, Choudhary R, Jain R, Sharma S, Saini SL. Predictive value of platelet indices in development of preeclampsia. J SAFOG. 2012 Jan;4(1):17-21.
- 24. Boddapati A, Inuganti Venkata R, Riyaz P, BV V, Deepak V. Hematological and Biochemical Abnormalities in Pregnancy-Induced Hypertension. Journal of Clinical and Basic Research. 2022 May 10;6(2):12-24.
- 25. Bhutani N, Jethani V, Jethani S, Ratwani K. Coagulation profile and platelet parameters in pregnancy induced hypertension cases and normotensive pregnancies: A cross-sectional study. Annals of Medicine and Surgery. 2022 Aug 1;80:104124.
- 26. Sukri M. Correlation between Hematologic Parameters and Asymptomatic Bacteriuria in the Full-Term Pregnant Patients in Dr. Kariadi Hospital, Semarang, Indonesia. Diponegoro International Medical Journal. 2022 Jul 29;3(1):7-13.

- 27. Bayoumi MA, Ali AA, Hamad SG, Ali AA, Elmalik EE, Elkalaf MM, Moustafa BA, Shaltout DA, Chandra P, Langtree LJ, Olayiwola NO. Effect of maternal preeclampsia on hematological profile of newborns in Qatar. BioMed Research International. 2020 Mar 12;2020.
- Pollack A. ACOG practice bulletin. Clinical management guidelines for obstetrician-gynecologists. Number 46, September 2003.(Replaces technical bulletin number 222, April 1996). Obstetrics and gynecology. 2003 Sep 1;102(3):647-58.
- 29. Omoniyi OS, Fajolu IB, Adediran A, Temiye EO, Ladele JI. Clinical and haematological features of newborns of mothers with hypertensive disorders in pregnancy in Lagos, Nigeria. Nigerian Journal of Paediatrics. 2020 Aug 6;47(3):252-7.
- 30. Aliabad GM, Dahmardeh F. Hematological Parameters in Newborns of Mothers with and Without Preeclampsia. Medical-Surgical Nursing Journal. 2022 Feb 28;11(1).
- 31. Eman N, Manazir AS, Uzma F, Nasreen N. Comparative study of cord blood hematological profile of neonates born to mothers with and without pregnancy-induced hypertension: A prospective case–control study. Indian Journal of Child Health. 2017 Dec 25;4(4):554-60.
- 32. Mouna K, Doddagowda SM, Junjegowda K, Krishnamurthy L. Changes in haematological parameters in newborns born to preeclamptic mothers-a case control study in a rural hospital. Journal of Clinical and Diagnostic Research: JCDR. 2017 Jul;11(7):EC26.
- 33. Al-bahadily AK, AL-Omrani A, Mohammed M. The effect of pregnancy induced hypertension on complete blood count of newborn. International Journal of Pediatrics. 2017;5(9):5667-76.
- 34. Dagar J, Au C. Study of hematological profil to mothers with hypertensive pregnancy as compared to n mothers.
- 35. Jhajharia N, Verma M. Hematological changes in pregnancy induced hypertension in their third trimester at Jhalawar Medical College, Jhalawar,

India. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2019 Sep 1;8(9):3497-502.

36. Shariff ME, Al-Qahtani F, Al-Qahtani M. Comparative Study of Hematological Parameters in the Third Trimester of Hypertensive and Normotensive Pregnant Women.

APPENDIX 1

CASE RECORD SHEET:- (CONTROL / INTERVENTION GROUP)

- Name : Registration Id:
- Age: Qualification/education: mobile no.
- Occupation: Residence:
- Date of admission: date of discharge:
- Chief complaints
- HOPP
- Menstrual History:

Menstrual cycle-

LMP-

POG-

EDD-

- Obstetric History:
- Past History:
- Family History:
- Personal History:

On Examination:

- General condition
- Pulse rate /min
 Blood pressure(mmHg)
- Respiratory rate/min
 Temperature
- Pallor / Icterus/Cyanosis/Clubbing/Lymphadenopathy/Edema
- Weight(Kg): [prepregnancy if known] Height(cm):

- Body Mass Index(Kg/m²)
- Central Nervous System:
- Respiratory System:
- Cardio-Vascular System:
- Per-Abdomen

Final Diagnosis:

INVESTIGATIONS:

	DATE Mother	Newborn
Blood Group		
CBC-		
Hb-		
HEMATOCRIT		
PCV		
МСН		
МСНС		
RDW		
TLC-		
PLEM		
Plt-		
PDW		
Urinary proteins		
OGTT		
HIV/HBsAg/VDRL		
RFT		
LFT		
Blood group		
TSH		
USG		
Others		

• Labour-

Onset- Spontaneous/ Induced

Indication of induction-

Duration of stages of labour- $1^{st}/2^{nd}/3^{rd}$ - hrs/ mins/ mins

Mode of delivery:

Type of placental delivery-

Any complications:

Baby:

Date	time	weight	sex	APGAR	
Any complica	ations:				
Head circumf	Terence-	NICU ad	dmission- YES	/NO	
Breast feedin	g started at:				
Any complica	ations /problem				
Jaund	ice/ phototheraj	py/ exchange tr	ansfusion		
Polyc	ythemia/ fever/	lethargy/inabil	ity to feed/		
OTHERS:					
Day 1	Day 2		Day 3	Day 4	day 5

APPENDIX 2 ALL INDIA INSTITUTE OF MEDICAL SCIENCES, JODHPUR, RAJASTHAN **INFORMED CONSENT FORM**

Title of Thesis/Dissertation: "To study the Effects of maternal hypertension on the neonatal umbilical cord hemogram."

Name of PG Student : Dr. Chaithra B V Tel. No. : 7975738127

Patient/Volunteer Identification No. :

I, ______W/o or D/o ______

R/o _____

give my full, free, voluntary consent to be a part of the study "To study the Effects of maternal hypertension on the neonatal umbilical cord hemogram: A Prospective Cohort Study" the procedure and nature of which has been explained to me in my own language to my full satisfaction. I confirm that I have had the opportunity to ask questions. I fully understand that any of the above mentioned observation can be given to me, still I want to be a part of study.

I understand that my participation is voluntary and am aware of my right to opt out of the study at any time without giving any reason.

I understand that the information collected about me and any of my medical records may be looked at by responsible individual from AIIMS, Jodhpur or from regulatory authorities. I give permission for these individuals to have access to my records.

_

Place:

Signature/Left thumb impression

This to certify that the above consent has been obtained in my presence.

Date:	
Place:	Signature of PG Student
Witness 1	2. Witness
Signature	Signature
Name:	Name:
Address:	Address:

ऑलइंडियाइंस्टिट्यूटऑफमैडिकलसाईंसिस, जोधपुर, राजस्थान सूचितसहमतिप्रपत्र

थीसिस / निबंधका	शीर्षक:	कॉर्डब्लेडहेमोग्रैमपरमैट्रनलहाइपर्टेंसनकाप्रभाव -
भावीकाउहोटअध्ययन [,]		
पीजीछात्रकानाम: डॉ.चैत्रार्ब	ोवी	
दूरभाष।संख्या: +91-79757	38127	
रोगी / स्वयंसेवकपहचानसंख	म्राः	
मैं,	पुत्री/पत्	त्री
निवासी		
अध्ययन"कॉर्डब्लेडहेमोग्रैमप	ारमैट्रनलहाइप	र्टेंसनकाप्रभाव-भावीकाउहोटअध्ययन"
मेंभागलेनेकेलिएमेरीपूर्ण,		स्वतंत्र, स्वैच्छिकसहमतिदेतीहूं,
जिसकीप्रक्रियाऔरप्रकृतिमुद्	झेमेरीभाषामेंसग	मझाईगईहै।मैंपुष्टिकरतीहूंकिमुझेप्रश्नपूछनेकाअवसर
मिलाहै।मैंसमझतीहूंकिमेरीभ	गगीदारीस्वैच्छि	कहैऔरमुझेकिसीभीसमयअध्ययनसेबाहरनिकलने
काअधिकारहै।।मैंसमझतीहूंवि	केमेरेऔरमेरेमे	डिकलरिकॉर्डकेबारेमेंएकत्रितकीगईजानकारीकोऑ
लइंडियाइंस्टिट्यूटऑफमैडि	कलसाईंसिसवे	⁵ जिम्मेदारव्यक्तिद्वारादेखाजासकताहै
मैंइनलोगोंकोमेरेरिकॉर्डदेख	नेकीअनुमतिदे	तीहूं।
तारीख :		
जगह:	-	हस्ताक्षर / बाएंअंगूठेकाछाप
यहप्रमाणितकरनेकेलिएकिम्	रिउपस्थितिमें	उपरोक्तसहमतिप्राप्तकीगईहै
तारीख :		
जगह:	-	पीजीछात्राकेहस्ताक्षर
1. गवाह	2.गवाह	
हस्ताक्षर	-	हस्ताक्षर

नाम_____नामः_____ पता_____पता : _____

68

APPENDIX -3

PATIENT INFORMATION SHEET (PIS)

You are invited to take part in this study entitled "The Effect of Maternal Hypertension on the Neonatal Umbilical Cord Blood Haemogram- A Prospective Cohort Study".

It is informed that it is entirely voluntary and you may refuse to take part or discontinue at any time without losing your right to adequate gynecological care.

This research is aimed at comparing the hematological parameters like hemoglobin, TLC, platelet count, hematocrit, RDW in maternal and umbilical cord blood of hypertensive and normotensive mothers; incidence of polycythemia, neonatal jaundice and need for phototherapy in baby.

Even if you refuse to participate in this study the investigations and the appropriate treatment will be carried out as a regular protocol.

The expected duration of your participation in this study is till discharge postoperatively.

There is no specific complication due to the study.

All the records will be kept confidential.

You have the right to ask for any further information that you require.

In case of any doubt regarding the study you are welcome to contact the undersigned personally or telephonically.

Dr. Chaithra B V Contact No. 7975738127

रोगीसूचनापत्र

आपकोइसअध्ययनमेंभागलेनेकेलिएआमंत्रितकियागयाहै**"कॉर्डब्लेडहेमोग्रैमपरमैट्रनलहाइपर्टें** सनकाप्रभाव-भावीकाउहोटअध्ययन"

यहसूचितकियाजाताहैकियहपूरीतरहसेस्वैच्छिकहैऔरआपपर्याप्तस्त्रीरोगसंबंधीदेखभालकेअपने अधिकारकोखोएबिनाकिसीभीसमयहिस्सालेसकतेहैंयाबाहरनिकलसकतेहैं।

इसअनुसंधानकाउद्देश्यसामान्यऔरउच्चरक्तचापरोगियोंअथवागर्भनालब्लेडमेंहीमोग्लोबिन,

टीएलसी, प्लेटलेटकाउंट, हेमटोक्रिट,

औरआरडीडब्ल्यूजैसेहेमटोलॉजिकलमापदंडोंकीतुलनाकरना;<mark>पॉलीसिथेमिया,</mark>

नवजातपीलियाऔरबच्चेमेंफोटोथेरेपीकीआवश्यकतादेखनाहै।

यदिआपइसअध्ययनमेंभागलेनेसेमनाकरतेहैंतबभीजांचऔरउचितउपचारएकनियमितप्रोटोकॉल केरूपमेंकियाजाएगा।

इसअध्ययनमेंआपकीभागीदारीकीअपेक्षितअवधितीनसेचारदिनयाअस्पतालसेडिस्चार्जतककेसम यतकहोगी।

अध्ययनकेकारणकोईविशेषजटिलतानहींहै।

सभीअभिलेखोंकोगोपनीयरखाजाएगा।

आपकोकिसीभीअधिकजानकारीकेविषयमेंपूछनेकापूराअधिकारहै।

किसीभीअध्ययनकेबारेमेंसंदेहकेमामलेमेंआपअधोहस्ताक्षरीसेव्यक्तिगतयाटेलीफोनसेसंपर्ककर नेकेलिएस्वतंत्रहैं।

डॉ.चैत्राबीवी

फ़ोननंबर: 7975738127

ETHICAL CLEARANCE CERTIFICATE

अखिल भारतीय आयुर्विज्ञान संस्थान, जोधपुर All India Institute of Medical Sciences, Jodhpur संस्थागत नैतिकता समिति

Institutional Ethics Committee

No. AIIMS/IEC/2021/3476

Date: 12/03/2021

ETHICAL CLEARANCE CERTIFICATE

Certificate Reference Number: AIIMS/IEC/2021/3311

Project title: "To study the effects of maternal hypertension on the neonatal umbilical cord blood hemogram"

Nature of Project:	Research Project Submitted for Expedited Review
Submitted as:	M.D. Dissertation
Student Name:	Dr. Chaithra BV
Guide:	Dr. Pratibha Singh
Co-Guide:	Dr. Garima Yadav, Dr. Neeraj Gupta, Dr. Manu Goyal & Dr. Priyanka Kathuria

Institutional Ethics Committee after thorough consideration accorded its approval on above project.

The investigator may therefore commence the research from the date of this certificate, using the reference number indicated above.

Please note that the AIIMS IEC must be informed immediately of:

- Any material change in the conditions or undertakings mentioned in the document.
- Any material breaches of ethical undertakings or events that impact upon the ethical conduct of the research.

The Principal Investigator must report to the AIIMS IEC in the prescribed format, where applicable, bi-annually, and at the end of the project, in respect of ethical compliance.

AIIMS IEC retains the right to withdraw or amend this if:

- · Any unethical principle or practices are revealed or suspected
- · Relevant information has been withheld or misrepresented

AIIMS IEC shall have an access to any information or data at any time during the course or after completion of the project.

Please Note that this approval will be rectified whenever it is possible to hold a meeting in person of the Institutional Ethics Committee. It is possible that the PI may be asked to give more clarifications or the Institutional Ethics Committee may withhold the project. The Institutional Ethics Committee is adopting this procedure due to COVID-19 (Corona Virus) situation.

If the Institutional Ethics Committee does not get back to you, this means your project has been cleared by the IEC.

On behalf of Ethics Committee, I wish you success in your research.

Member secretary ARMS Jodhow

Basni Phase-2, Jodhpur, Rajasthan-342005; Website: www.aiimsjodhpur.edu.in; Phone: 0291-2740741 Extn. 3109 E-mail : ethicscommittee@aiimsjodhpur.edu.in; ethicscommitteeaiimsjdh@gmail.com

1.	1.	1.	1.										Tw	- Lw	- L	Tw	33	32	31	30	29	28	27	26	2	24	23	21	2 2	2	19	18	10		-	: 53	12	=	10	•		-	6 5	-		2	-		No S
8 40	+	+	+	+	+	+	+	42 2	41 31	40 26	39 26	38 24	+	+	+	+	+	2 27	+		-	24	-	-	+	-+	+	+	+	+	+	+	21	+				27	28		_		29		_	_	_	-	Age
32 Rekha sharma 24 Sukhi devi	+		-	_	_	_	_	22 Anshi kanwar			6 Kanchan	4 Minakshi	+	+	+	+	Babita					_	-			_	-	Karoona jain	-	_	Secta	Milan soni	Drooti	Chaline Khatin	Vimla	Pooja	Kiran	Suveksha mathur	Khushboo	Kanchan	Durga devi	Sarah khan	Anita Nirmla bhoel	Komal	Nidhi sankhla	Kavita sancheti	Parul soni		Name
2022/04/008116	1294110/40/7707	2022/04/01110	2022/08/002821	2013/12/001070	2022/09/005883	2022/03/002312	2022/06/023006	2022/11/000012	2022/07/012560	2018/09/013675	2021/06/013199	2021/03/006539	2021/07/004904	2021/03/013698	2020/08/003192	2022/03/017123	2019/02/008664	2022/06/015564	2022/08/012278	2022/04/013310	2022/08/008932	2021/12/019305	2017/11/015477	2022/01/034094	2022/06/003083	2021/12/012530	2022/08/012279	2021/12/012745	2022/03/007528	2021/08/006023	2022/01/028663	2022/03/005044	2019/07/007505	96,9000/90/20/20/2	+20100/60/202	2022/04/015488	2021/09/011983	2022/06/001798	2022/06/004816	2019/05/019652	2022/03/011522	2022/02/005967	2022/06/019789	021010/11/1202	2022/01/029369	C76500/C0/7707	71/000/50/202		Rcg No
6 Secondary school		+	z				Primary	Illiterate	Post graduate	Primary	M	t	T	MIC	t	4	+	\uparrow	t	Post graduate	Graduate	Graduate	Graduate	Graduate	Graduate	Middle school	Graduate	Graduate	Post graduate	Illiterate	Higher secondary	Graduate	Post graduate	Secondary school	Diaquaic	Post graduate	Graduate	Post graduate	Post graduate	Secondary school	Illiterate	Middle school	Graduate	Secondary school	Graduate	rost graduate	Post graduate		Qualification
H	+	+	Senu urban	Urban	Urban	Semi urban	Semi urban	Urban	Semi urban	Kural	Schi moan	Scill mom	Some urban	Semi urban	Somi unhan	Biral	C Num	Semi urban	Semi urban	Semi urban	Urban	Urban	Urban	Urban	Semi urban	Rural	Semi urban	Urban	Urban	Rural	Rural	Urban	Urban	Semi urban	Rural	Uroan	Kural	Semi urban	Semi urban	Semi urban	Rural	Urban	Urban	Semi uroan	Urban	Uroan	Urban		Residence
GSP1122	P	G2P0010		Prinu Gravida	Prini Gravida	+	+	1	UZFIUUI	UZF 1001	G3P1001	Print Gravida	Primi Gravida	G2P0010	Primi Gravida	G2P1001	Primi Gravida	Gap1101	USP2002	010047D	G2P0010	Primi Gravida	Primi Gravida	G3P0020	G2P0010	G2P0010	Primi Gravida	Primi Gravida	Primi Gravida	G5P2022	Primi Gravida	Primi Gravida	G2P1001	G5P1031	G3P1010	G3P0010	+	Primi Gravida	G2P1001	\square	-		G2P1101	5	+	+	+	-	GRAVIDA / PARITY
	38+3 wocks	38	38+4 wocks	+	+	+	1.	+	+	16+5 works	+	+	-	+	+	-+	+	36+3 works	+	JALL WOOKS	37+1 wocks	JY WOCKS		+	-		31 weeks	39+6 weeks	-	-	5	-	_	-	_	38+6 wreks	_	+-	+		-	~	32 weeks 1		_	_	_	-	
13 3	143	+	-	_	_	7 11	1.1.2	111	32		132	= 4				.		117	176 414	10			1.1		_		10.8	11.4	11.4 3	10.2	13.1 3	11.2	12.6 4		10.9 3	1193	10.0 3				10.2 10	11.8 34		17 4 4	120 4		1.00 4 21		MOTHER HB (dl) MOTHER HCT (%)
398	395	-					174	1 81	43	181	412	377	31.7	33.5	30.9	40.8		-	444	+	-				+	+	-	+	36.3	22	38.8	26			-	+	34.4	+	+	+ 1	10.3 1	34.8 2		377			-	+	MOTHER
4 36	23	109	140	200	11	191	564	2 24	3	217	165	2.87	167	1 72	2.78	4 02	21		2	_	_	17	_	_	_	+	+-	+	+-	1.02	+	3.04			_	_	1.64	-	-	+ +	122 2	2.39 2	1.85 2	_	2 00 5	-	-	+	Platelets lacs/cumm)
28.5			104	326			207	339		28.2		25.1	20.8		30.4	27.9	31.2	-			162		205		10.1					_	-		-				2 4 4			27.6 3	27.6	29.1 3:		_	21.1 2				MOTHER MCH (pg) MOTHER MCHC (g/dl)
33 4		1.75	151				_	34.6	919	33.2	32	30.2	28.7		34.5 4	33.1 4	34.7 4	31.9 43.7	30.4 4	31.9 4				33 7 4	2 4	10	29.4 3	34		3			30.9 5		31.6 49	33.6 40	317 439			33.5 39.4		33.8 54.9		33 5 44 4	33 46		1.04 0.70		MOTHER RDW (fl)
30	_	4 .			-		-	44	85.3	46	6	44.3 1				44.4						<u> </u>		460 1	43 4 21 1	_			45.8 14.1	36 10	-		-		49.1 12.6		_	9 16.1		4 16.2	1 16.3	.9 16		4 16.0			7 16.4	_	MOTHER PDW (fl)
11 1 61	-	-	-	15.7 9780	_	_	10 5 11300	16.3 10600	15.7 8890	16.8 10530	17.8 18470	-	+	+-		+-	15.8 10750	-		14.3 21,190	-	-	16 12.530		14.7 12,810 211 9 240	0 17 810			1 11,400									1 10,360			3 8,860	10,460			5 10,480				MOTHER TLC (/cumm)
t	1		7	-	-	-	-	+	+	+	0000	+				12	+-	0 6920	-			7000	-+	-+	_	0 6 6 6 0	-	11.2	2	E.Z		-	7,9			-	-+	7 900	-	+	7,960	-	\rightarrow	+	7 730	+	-		MOTHER POLYMORPHS (/cumm)
H	+	+	-	10 16.5	-	50 144	96 01	+	180 175	+	+	+	+	10.0	+	+	+	0 22.2	0 18.5		+	+	+	-+	+	0 14 1	+	+	+		+	+	0 15.6	10 14.6		+	+	16.6	+	+	17.9	19.8	+	+	10.8	+	20.7	+	CORD BLOOD HB (g/dl)
H	+	+		-	-	4 42 1	-	9 41.7	+	⊢	+	+	+	+	1.	+	+	+	5 54		+	-	-	+	_	+	60.1	+	+	+	\pm	+	+			53.9	+	11/2	+	+	55.7	58.5	63.4	+	404		102		CORD BLOOD HEMATICRIT (%)
	+	-	-	468 3	516 2	-	277 0	1	+	+	+	+	+	+	+	+	+	+	+	H	\vdash	-	-	+	+	+	+	+	+	+	+	+	t	+	-		+	3 56	+	+	+	2.08	+	+	+	+	+	3	CORD BLOOD PLATELETS
-	+		-	3 05	2.18	2 51	+	F	2.95	+	+	+	+	+	+	+	+	+	2.02 3	2.2 3	+	-	-	-+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	-	-	+	+	+	+	+	376	CORD BLOOD
	33	38.2	34 8	37 5	37	381	⊢	+	+	+	+	+	+	+	+	+	+	-	36.7	35.5	+	36.2	-	+	+	+	+	20 22	+	+	+	+	+	⊢	-	-	-	376 3	+	-	+	37.1 3	+	+	+	+	+	+	CORD BLOOD
	IJ	36.9	33	354	33.2	341	34.7	33.4	13	3	339	291				32.9	3	33.8	343	328	32.1	-	-	ដ	32.5	+	+	7 00	22	34.0	+	+	+	+	-	33.4	-	32.2	2 8	F	+-	33.8		+	+	+	+	268	MCHC CORD BLOOD
	1	18	11	583	659	595	524	08.0	18 5	38	408	1 10	10.0	1.01	110	01/	130	72.5	64.4	65.5	66.5	714	63.2	3	89	136	756	169	2.	- 20	120	117	78.4	5	62.9	58.5	44	748	- 6	62.3	63.9	60.7	88 5	4	58.2	76.6	61 -	68.2	RDW
	13	172	16.5	10 5	10.7	102	10.0	140	104	10.2	10.4		1	101	16.0	121	-	14.3	118	103	9.1	12	96	13.5	12.5	5	111	11.4	12		1	101		15	III	12.1	12.2	0	17	96	134	=3	32	171	11.2	157		165	CORD BLOOD PDW
	14500	+	+	+	+	+	+	+	0011	+	+	+	TURUT	+	+	11/201	14040	+	+	+	12,230	16,650	\vdash	-	-+	14,120	13 020	0350	16 700	137 21	10,120	4,000	9.040	15,720	9330	9020	10870	7,110	16,120	8,140	8,100	7,470	3,800	15,320	19.640	8 620	13.120	197400	CORD BLOOD TLC
	11230	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0110	+	+-	+	+	+	0665	-			-		3320			10 360	-	+	+	2370	-	-	-	11 170		+-	6,360		-	-			15200	CORD BLOOD POLYMORPHS
		T	+	+	1	1	1		1	-	$^{+}$	Proc	+	1	Prooc	1	Costational hypertension	Preoc	$^{+}$	Prooc	1				Proc			Proo				Procelamosia with severe features	Pree	T		Gestational hypertension	P	Proc	Gestational hypertension		Gestational hypertension	Gestational hypertension	Proc		Gestational hypertension	Gestational hypertension	Gestational hypertension	Gestational hypertension	HYPERTENSIVE DISEASE OF PREGNANCY
		NO	NO	YES	NO	NO	NO	NO	N	NO	N	NO	NO	NO	YES	NO	NO	NO	N	5 2	VER NO	NO	NO	NO	NO	NO	NO	YES	N	NO	YES	YES	5 8		YES	NO	NO	YES	N		YES	NO	YES	NO	NO	NO	NO	NO	NICU ADMISSION FOR BABY
		Jaundice	Ph	t	17	Jaundice	Jaundice	Solpune	No complications	┝	+	Z	+	t	t	1		+	z	+	Ruth apply autors	+	+		t	t	Burth asphyxua	Noo			+	+	Rinth asphyria	+	Bu	t	⊢	No	+	Birth asphysia	B	t	-	No	+	F		Phototherapy	NEWBORN COMPLICATIONS

MASTER CHART

	_	-	-	-	-	_	_			_	_	_		_		,		-	-	-	-	-	-	1	-	-	-	T	-	-	Т	Т	Т	T	Ŀ	Ŀ	1-	6		<u>_</u>	w.	5	5	2		-	5	5 -	z Z s
88	+	+	+	+	+	+	+	-	-	-	68	+	╋	+	╋	+	+	+	+	+	+	+		+	+	+	+-	+	+	+	+	+	+	+	+	+	+	62 2	+	-	-	+	+	+	1 22	+	+	2 1	
23 E	+	+	+	-	+	-	-	-	_	26 F	24 K	26 B	_	-	+	+	-	-	-	+	-	-	-		_	-	+	+	+	-	_	-	-	-	+	_		26 M		_	_			_	+				
Babli Entu sukhla	Anse solanki	Dumple rathore	ARUDRA JORNAW AL	Analysis was at	alida Laurad	Purhana hano	Privanka sharma	Sushima devi	Jau	Harsha rath	Kavita vishnor	Ranksu	Vishakha gehiot	Aartı jangıd	Anju kanwar	Urmula	Umpal	Shvan kanwar	Nandini vaishmavi	Chandani mchta	Dusha	Mannta	Saroj	Sarla	Bhavana	Hardika chouhan	Deepika nehra	Indra	Lila Kanwar	Pooja kanwar	Mamta geniot	Sanju devi	Mamta	Minakshi sharma	Harshita	Manisha soni	Mocnal arora	Moenal arora	Gudaya	Moona	Manshu devi	shi	Rekha	Raiu devi	MORINA	Monito	I TIVAIDA	Manusna	
2022/05/015298	2022/03/009724	C00100/C0/7/07	01100100100102	2018/04/009770	2018/07/007626	2022/06/021100	2022/06/011033	2022/10/003750	2018/02/009584	2022/05/012442	2022/05/008154	2022/07/013518	2022/06/018142	2022/07/000944	2021/10/00/05	40C/10/00/17707	2022/05/01/15/02	102200-00100000000000000000000000000000	2019/01/030292	2018/02/010927	2022/04/002806	2022/11/000718	2022/07/019611	2022/08/002074	2021/12/010/24	2022/04/011461	2022/05/002125	701700001010	21022/06/06/012/02	2022/07/07/2019	2021/12/004082	0+6C00/00/11/00	2022/01/025230	2022/04/003821	2022/07/019773	2022/07/002570	2022/06/005733	2022/06/005733	2021/11/016726	2022/01/032036	2022/05/000307	2022/10/000451	2022/07/01/2315	2022/10/000512	P01510/00/202	P4/ 200/20/20/20/2	164410/00/7707	198800/71/0707	R gg Z
Graduate	Higher secondary	A remencing to the factor	Higher secondary	Higher secondary	Higher secondary	Secondary school	Graduate	Secondary school	Graduate	Secondary school	Middle school	Muddle school	Secondary school	Secondary school	rugher secondary	Lingues accounter A	Secondary school	MINDER SCHOOL	Secondary school	Secondary school	Middle school	Muddle school	Secondary school	SCOMPANY SCHOOL	Secondary school	Higher secondary	Higher secondary	Tight scondary	Secondary school	MINGE SCHOOL	rugher secondary	Secondary school	Higher secondary	Higher secondary	Middle school	Secondary school	Higher secondary	Higher secondary	Higher secondary	Secondary school	Primary	Middle school	Middle school	Milduc school	Uraduale	Higher secondary	Uraduate	Graduate	Qualification
Urban	Urban	0.00	Urban	Urban	Urban	Rural	Urban	Rural	Urban	Urban	Rural	Rural	Unan	Kural	Oroan		Oroan		Urban	Urban	Kura	Kural	Unan		Kural	Urban	Urban	CIDAN	NITAL		Orban	T LA LA	Urban	Urban	Rural	Urban	Urban	Urban	Rural	Rural	Rural	Somi urban	Rinal	Lithan	Scmi urban	Semi urban	Urban	Urban	Residence
G2F1001	GIPION	GOPINI	Prumi Gravida	G2P1001	G3P1011	G3P2002	Prumi Gravida	Primi Gravida	G2P1001	Prunu Gravida	Prumi Uravida	Prumi Gravida	UZP1001	CODION	USFIEL	GAPIOII	GIPION	GIDOOD	DEFIU	G2P1001	CODINI	Primi Gravida	Only Jen	Copinos	Corol I	Primi Gravida	U2P1001	Cabion	CADODAD	UTFIVE	CABINTI	CODOIOI	GZP1001	GSPIIZI	Prumi Gravida	G4P3002	G2P1001	G2P1001	G2P0010	G3P0020	Primi Gravida	Primi Gravida	Primi Gravida	+	-	GAPITZ	G2P1001	Primi Gravida	GRAVIDA /PARITY
Ц						37+6	36	37+6	40		1			1011			17+7	1	\downarrow	140			ľ			+	1			100		3040		1		38+4		40+1		+	~	+	39 works		+	+	3/	ocks	POG
		333	128 3	137	134 4	12.2	1123	104 3	138 4				12.0			177	_	4	-									10	127	-	12.7		12.2					153 4	143 4	-			_	8 - 3	+			+	
	+	-	394	39	434	39	336	33 3	436	+	+	+		+	+	+		417		+	+		+		270	+	+	÷		+		+	+			+	+	44 1		-	-		+	0 10	+	+	+		
\vdash	-	-	861	1.55	2 54 3	3 09	3 02 2	21	2 22 2	+	-	-	+	1		+	-	1 22	+	+	10.01	_	+	+	-	_	_	_	2 48	+	+	1 2 2	_	+	+	+	+	2 23		-	-	-	\rightarrow	1 1 0 7	+	+	+	-	MOTHER Platelets lacs/cumm)
		3153	33 3	296 349 438	324 3	2423	293 3	20 8 3			-			10.0	10 8 2				1 1 10		1 1			204 2			11.4	3 .	1 7 7		1 1 1	101						29.5 3	28.3 3			26.8		104					MOTHER MCH (pg)
25 45	33 6 45	33 6 44 8	32 5 48 7	49 43	31 3 43 2	312 44 5	33 5 42.2	312 43	1.	33 4 40 4		1 2 4 2 4 2 4	1 10	24 5 41 5			34 4	33 6 45 9	1 4 577	11 1 1 1 1	119 416	8 Cb 6.76		177 464	171 171				-	11 12	24 4		32.7 444	32.4 43.6	30.4 48		33 5 42	32.5 40						2 3		34 2 44			MOTHER MCHC (g/dl)
	7	8 16 4	7 192	8 17	2 134								17.7	5 164		9 11 5	-			3 164		8 15 7		4 16 1			10.2 12.2		-	201 102	4 16	455 127		6 13 3	48.4 14.2	-		46.2 13.2				-+	_	<u> </u>			418 16 1	-	MOTHER RDW (ft)
		4 9630	2 9240	17340	4 14380		-	-	-	-		-			-	-	-			_		0 14920		-	_	_		-	_			-	3 13470			-	_	2 10530			-+		9 10500		+	+	+	+	MOTHER TLC ((cumm)
4390	8720	5970	7040	14250	9560	5130	5570	1000	1340	04071	0000	7410	4070	9780	9290	\$720	1490	11280	5660	1980	0800	\$740	10000	4690	9840	11710	1795	1820	18060	7560	6430	0189	UC88 INDERV	/430	9320	8380	9560	7220	7200	22000	8340	6530	7840	1760	6690	6370	8680	6590	MOTHER POLYMORPHS (/cumm)
12.6	83	143	164	163	12.5	164	163	571	12.8			16 1	164	15 2	164	12.5	15 8	214	157	176	57	105	14	103	146	12	10.4	134	154	114	54	84	100	18.5	16.4	135	14.5	15.6	4	43	12	5	4 8	1	5	42	22	13.4	CORD BLOOD HB (g/dl)
46 9	532	135	48 2	494	463	48 3	48 3	2 60	400	40.5	187	479	489	48 3	479	46 4	46.1	542	472	497	45 5	45.2	44 8	194	45 6	7	187	42 7	48 2	46.7	4 4	205	44 7	493	493	473	48 3	48 9	50.4	42 5	56	\$	43 6	5 4		45	707	36	CORD BLOOD HEMATICRIT (%)
312	341	321	3 54	265	2 65	3 93	2 34	1 36	2 07	3.0	2 4 4	249	2 31	245	241	334	238	2 54	298	- 33	234	264	22.5	245	264	244	195	141	3 24	111	745	-45	1 11	1 10	23	2 34	2.58	264	365	- 14	-6	124		210	124	297	26	t	CORD BLOOD PLATELETS
34 2	362	32 5	356	364	353	36 6	336	32 6	100	7.00	200	353	357	357	36	35 2	35 5	35 5	34 8	1.01	351	39.6	1.1	180	33 4	1.1	100	2	357	2	30,5	78.4	24.7	140	34 %	342	34 4	32 %	33 4	40 5	3	33	357	20	35	28	1.55	29	CORD BLOOD
32.6	+	342	332	+-	+	+-	+	t	+	+	+	+	+	-+	+	-+	+	+	+	+	+	+	+	-+	+	+	+	+	-+	+	+	+	2 27	+	+	+	+	+			36	+		34	30	32	1	+	MCH CORD BLOOD
48	63 5	542	49 4	+	+-	+-	+	+	+	+	+	+	+	+	-+	1	+	1	+	+	+	+	+	+	+	+	+	+	+	-+	+	+	7 60 0	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	MCHC CORD BLOOD
3 19		-	t	+	+-	+-	+	t	+-	+	+	+	+	+	-	-	-+	+	-+	+	+	+	+	-+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+ +	-	-	+	4	45	+	+	F	+	RDW CORD BLOOD
-	141 1	142 1	136 1	+	+	+	+	10.4	+	+	+	+	-+	+	+	-	-	+	+	+	+	+	+		-+	+	+	+	+	+	+	-+	129	+	+	+	+	+	+	-	-	+	-		+	+			PDW
132360	080	13760	+-	+	+-	134/9	DANC71	01071	12400	1111	1420	1780	3860	12200	13700	12450	12470	12350	1600	2430	12406	13260	17860	12300	3260	14770	17380	10380	13470	13200	0016	17290	13420	AUN	(Marth)	Division of	14300	12730	15600	3890	13490	3400	6400	4000	Cuthe L	13400	CANCI -	TAIN	CORD BLOOD TLC
9860	11750	0350	186A)	10430	A SMU	12471	COMP.	are to	10001	TRUN I	10450	1350	9200	7780	\$120	7580	9100	10340	8200	7350	6800	9830	6.8430	\$329	8560	445	05.80	7360	10380	9630	1490	19280	3940	(10180)	CALCO	1430	9530	0.64	9068	720	9870	0068	\$\$60	7340	4400	11.66	COMP.		CORD BLOOD POLYMORPHS
Normaliansive instance	Norms Acres ve formale	NOTING CONTRACTOR	NOT TROUGHT VC INVISION	A STREAM AND A STREAM			rego providente formale	in the second second free site	Normalensus female	Normalization formation	šΙ	Normousney lognate	Non substantive female	Normoecasive female	Normolemeve female	Normosensove female	Normotemaye female	Normolomeres female	Normonensive female	Normoscasive female	Normolemetve female	Niormolensive female	Normoleasive female	Normoleassive female	Normoleassive female	Normalizative female	Normalensive female	Normotonsive female	Normolensive female	Normalensive female	Normotensive female	Normotenseve female	Normotensive female	Nermedensive female	Non-theorem Contractor	Normolemsive lemase	Normotensive female	Normotensive lemaie	Normotonaive female	Gestational hypertension	Gestational hypertension	Preeclampsia without severe features	Gestational hypertension	Partial hellp	Brand and and and an and an	resonantpaid without severe learnes	Contractional try bot remember	Preclampsia without severe leatures	HYPERTENSIVE DISEASE OF PREGNANCY
1	58	5	NO	3	0	8	8	8	3	8	NiO	8	6	NO	6	5	N	3	3	15	NO	3	5	ð	3	5	5	ž	3	3	5	z	3	3	5 3	58	NO NO	NO	NO	YES	NO	YES	z	YES	VE	TES	NO	NO	NICU ADMISSION FOR BABY
	No complective	No complications	No complications	Photother app	No compleciations	No complecitions	Photother up:	Low berth wenght	Wichghat kones	PhoseSherrapy	Wichaghe Lones	+	No complexations	aundur.		+	+	Nio complications	\vdash	1		Pik	7	-	7	3	1	-	+	Noo		1	0 Weight long	+		+	+	No		F		Ba	+	YES Burth anothyxua	t	Bu	t	1	

MASTER CHART

-	_	_	1	-	-	1	1	Ξ	Ξ	110	109	108	107	106	105	104	103	102	101	N s
120 1		118 31	117 1	116 22	115 27	114 27	113 24		_	-	-	-	-	-	-	1 32	26	29	19	Age
19 Pooja kanwar	24 Nandini vaishnav		19 Kamla kanwar	_	_	-							- 1	_	_		Lata kandpal	Santosh	Suman	Name
2022/07/015514	2019/01/030292	2022/03/002125	2022/04/018433	2022/04/007283	2022/08/017591	2022/07/016611	2022/09/001860	2022/09/001860	2020/12/007650	2017/08/008969	2022/07/013141	2022/07/004796	2017/10/000733	2022/03/010694	2022/04/003231	2022/03/017777	2022/07/017449	2022/05/002738	2022/09/008193	Rcg No
Secondary school	Higher secondary	Secondary school	Middle school	Middle school	Middle school	Graduate	Secondary school	Secondary school	Secondary school	Secondary school	Higher secondary	Secondary school	Higher secondary	Secondary school	Higher secondary	Higher secondary	Secondary school	Higher secondary	Secondary school	Qualification
Urban	Urban	Urban	Rural	Rural	Rural	Urban	Rural	Rural	Rural	Rural	Urban	Rural	Urban	Rural	Urban	Urban	Rural	Urban	Rural	Residence
G4P1021	G2P1001	G2P1001	Primi Gravida	G2P2001	Primi Gravida	Primi Gravida	Primi Gravida	Primi Gravida	G2P1001	Primi Gravida	G2P1001	Primi Gravida	Primi Gravida	G2P1001	Primi Gravida	G2P1001	Primi Gravida	G3P2002	Primi Gravida	GRAVIDA / PARITY
38+4	39	38+I	39+I	38+3	38+0	30+0	40+1	4014	39+4	39+4	39+0	34+6	40+1	40+4	40+2	36+5	39+0	37+4	37+4	POG
Ξ	13.1	12.1	12.9	12.9	11.9	11.5	10.8	10.8	12.6	10.4	14.3	14.2	10.7	11.2	11.2	12	5	11.2	E	MOTHER HB (dl)
33.9	39.3	36	39.7	39.7	37.2	34.7	32.8	32.8	37.1	10.4 32.9	43.1	42.2	32.7	34	34	36	307	33.1	33.7	
1.32	2.37	2.72	2.18	2.18			2.73	2.73	1.83	2.35	2	3.35	5.39	2.83	2.83	1.93	4.12	2.54	188	MOTHER Platelets lacs/cumm)
26.4	28.5	31.5	28.1	28.1	28.2	29.3	26.9	26.9	32	29.5	28.4	31.1	20.3	29.4	29.3	30.3	3	28.1	30	MOTHER MCH (pg)
32.6	33.3	33.5	32.6	_		33.1	32.9	32.9	_		33.2	33.8	32.6	32.9	32.9	33.5	32.7	33.4	33.4	MOTHER MCH (gg) MOTHER MCHC (g/dl) MOTHER RDW (fl) MOTHER PDW (fl)
50.4	43.3	50.4	87.3	87.3	64.7	49.3	26.0	56.5	_	_	44.3		34.7	53.3	53.3	46.6	45.1	45.6	45.7	MOTHER RDW (fl)
16.5	16.5	15.5	16.1	16.1	16.2	16.4	16.1	16.1	16.9	15.4	16.3	15.8	17.9	16.3	16.2	15.9	16	16	16.3	MOTHER PDW (fl)
9310	5070	0000	13200	10130	06001	14180	0680	0685	11240	6960	7340	0068	10790	13250	11400	8920	17850	17840	7850	MOTHER TLC (/cumm)
6830	1900	3810	9860	8400	6790	11210	4510	4510	8470	5150	4450	5310	8160	9570	8510	6560	15150	14440	4860	MOTHER TLC (/cumm) MOTHER POLYMORPHS (/cumm) CORD BLOOD
13.6	21.5	13.3	C71	13.7	16.5	10.4	12.0	12.4	14.6	16.3	11.4	8.9	12.5	15.6	11.3	11.3	13.4	18.4	14.3	CORD BLOOD HB (g/dl)
48.9	64.6	33.1	4/3	48.5	48.2	49.5	4/.0	46.7	46.7	48.2	43.6	34.2	46.7	47.5	42.4	419	451	48.2	46.8	CORD BLOOD HEMATICRIT (%)
3.00		3.13	2.34	2.00	2.65	2.43	0/ 7	90.1	1.96	2.78	3.25	1.32	3.13	3.25	2.43	2.65	1.54	2.54	2 65	CORD BLOOD PLATELETS
6		. u	با د	J 4	ب ر				1	5	w	2	ų	ų	5		L	5	w	CORD BLOOD