THE STUDY OF SURVIVAL OUTCOMES, PROGNOSTIC AND TREATMENT-RELATED FACTORS IN PATIENTS OFBREAST CANCER TREATED WITH POST-OPERATIVE RADIATION THERAPY

THESIS

Submitted to

All India Institute of Medical Sciences, Jodhpur

In partial fulfillment of the requirement for the degree of

Doctorate of Medicine (DM)

Radiotherapy & Oncology

July, 2020 AIIMS, Jodhpur

Dr. Rishi P Nair

All India Institute of Medical Sciences, Jodhpur DECLARATION

I hereby declare that the thesis titled "The study of survival outcomes, prognostic and treatment-related factors in patients of breast cancer treated with post-operative radiation therapy" embodies the original work carried out by the undersigned at All India Institute of Medical Sciences, Jodhpur.

Dr. Rishi P Nair Department of Radiation Oncology All India Institute of Medical Sciences Jodhpur (Rajasthan)

All India Institute of Medical Sciences, Jodhpur

CERTIFICATE

This is to certify that the thesis titled "The study of survival outcomes, prognostic and treatmentrelated factors in patients of breast cancer treated with post-operative radiation therapy" is a record of the bonafide research work of Dr. Rishi P Nair carried out under our guidance and supervision in the Department of Radiation Oncology, Department of Surgical Oncology, Department of Cardiology and Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan. Dr. Rishi P Nair has learned and performed all the clinical and analytical procedures involved in the study under guidance and supervision.

> <u>GUIDE</u>: <u>DR PUNEET PAREEK</u>

limethour

Additional Professor, Department of Radiation Oncology All India Institute of Medical Sciences, Jodhpur

DR JEEWAN RAM VISHNOI

Associate Professor Department of Surgical Oncology

CO-GUIDES:

PROF. POONAM ELHENCE

Head of Department Department of Pathology

DR SURENDRA DEORA

Additional Professor, Department of Cardiology

All India Institute of Medical Sciences, Jedhpur CERTIFICATE

This is to certify that the thesis titled "The study of survival outcomes, prognostic and treatmentrelated factors in patients of breast cancer treated with post-operative radiation therapy" is a record of the bonafide research work of Dr. Rishi P Nair, carried out under our guidance and supervision in the Department of Radiation Oncology, Department of Surgical Oncology and Department of Pathology, Department of Cardiology All India Institute of Medical Sciences, Jodhpur, Rajasthan. Dr. Rishi P Nair has learned and performed all the clinical and analytical procedures involved in the study under the guidance and supervision of his guide and co-guides.

Forwarded & Recommended by

GUIDE

funutlanel

Dr. Puneet Pareek Additional Professor & Head of Department Department of Radiation Oncology All India Institute of Medical Sciences, Jodhpur

DEDICATED TO MY MOTHER

ACKNOWLEDGEMENT

First and foremost, I would like to express my love, gratitude, and appreciation to my dearest parents, Mr. Prem Babu B and Mrs. Rani S Nair, for their never-ending love, care, blessings, and constant encouragement in my pursuit of happiness. I hope that I can make something of myself at the least to give me enough strength and capability to fulfill their dreams and provide them succor. I would like to gratefully acknowledge and thank my elder brother Mr. Balu Prem Nair, for supporting me throughout this course and being my pillar of strength. No words of gratitude are sufficient to express my sincere regard for my revered teachers and my Guide, Dr. Puneet Pareek, Prof Dr. R. K. Vyas, Dr. Akanksha Solanki, Dr. Sandeep Bairwa, Dr. Parmod Kumar, Dr. Akanksha Garg, Dr. Siya Ram Didel and Dr. Bharti Devnani. Their keen interest, competent guidance, and constant help in solving my day-today problems were instrumental in nurturing this project to its present shape. It was a matter of great honor to work under the guidance and blessings of my co-guides, Dr Jeewan Ram Vishnoi(Department of Surgical Oncology), Prof Dr Poonam Elhence (Department of Pathology), and Dr Surendra Deora (Department of Cardiology). I am also grateful for the support and guidance of Dr Harsha, Dr Sweta, Dr Shekhar, Dr Harika, Dr Ramakant, Dr Vaibhav, Dr Avni, Dr Prateek Daga(Senior Residents, Department of Radiation Oncology).

I am especially thankful to Dr Amit Mohan, Dr Sujoy Fernandez, Dr Sanjay Santhyavu, Dr Mukul Choubisa, Dr Samiran Chavan, Dr Kalyani Nair for their fruitful discussions, helpful criticism and genuine feedback that have made this whole experience a pleasurable one.

I would like to especially mention my batchmate Dr Atul Gupta who has stood by me through thick and thin and without whom it would have been hard to sail through our course, even making it moderately enjoyable during the process.

It was enlightening to work with Ms. Sonal Varshey, Mr Amit, Mr. Irfad, Ms Monika, Mr Jaswin, Ms Josmi, Mr Sanjib Gayen, Mr Sumanta Manna, Mr Mohsin, who were partners as Medical Physicists, in planning and assuring the quality of treatment of all the patients.

I am indebted to the excellent Radiation technologists in our Department Mr Basil, Mr Vipin, Ms Komal, Ms Meenakshi, Mr Pankaj, Mr Jitendra, Ms Bharati, Ms Sakshi, Mr Upendra, Mr Sujeet, Mr Deepak, Mr Nayan Ms Anjali. I would like to acknowledge the care and compassion shown to our study patients provided by the Nursing Staff of our Department and ward without whose company and help residency life and work would have been much harder. For the coordination and role in so many big and small works, Mr Gajendra, Mr Laxmikant, Mr Raj, Mr Rahul, and Mr Najir from the Administrative Staff of our Department deserves a word of praise. And I would like to extend my thanks to Mr Mangilal, Mr Mukesh, Mr Rajesh, Mr Dilip, Ms Aarthi, Ms Rinku, Ms Bhavna, Mrs Sangeetha and Ms Deepa Ji, without whom our work would have come to a standstill. I seek the sincere forgiveness of all and any whom I have forgotten to mention in my acknowledgements.

I would like to extend my love and appreciation to my dearest friends Dr Ankit Singh, Dr Dhanya Sree, Dr Himanshu Mishra, Dr Ashish Aggarwal, and Dr Aashita Aggarwal for their immense support and willingness to care for and for cheering me up in my bad days. I would like to acknowledge all the musicians, authors and poets who gave me company when I was down and alone without whom I wouldn't be the man I am now.

I thank all the patients who participated in this study for sharing their experiences and feelings, even when they were going through so much in their own lives. Lastly, I would like to thank myself for being true to myself and for working towards being the best version of myself.

Dr. Rishi P Nair

LIST OF ABBREVIATIONS

EBC	EARLY BREAST CANCER
LABC	LOCALLY ADVANCED BREAST CANCER
LN	LYMPH NODE
N+	NODE POSITIVE
RT	RADIATION THERAPY
QOL	QUALITY OF LIFE
ER	ESTROGEN RECEPTOR
PR	PROGESTROGEN RECEPTOR
HER-2	HUMAN EPIDERMAL GROWTH FACTOR-2
NACT	NEO ADJUVANT CHEMOTHERAPY
EORTC	EUROPEAN ORGANIZATION FOR RESEARCH AND TREATMENTOF CANCER
HRQOL	HEALTH RELATED QUALITY OF LIFE
NCCN	NATIONAL COMPREHENSIVE CANCER NETWORK
5FU	5 FLUORO-URACIL
GY	GRAY
IV	INTRAVENOUS
RCT	RANDOMISED CONTROLLED TRIAL
TEC	TAXANE, EPIRUBICIN, CYCLOPHOSPHAMIDE

TAC	TAXANE, ADRIAMYCIN, CYCLOPHOSPHAMIDE
FEC	5FU, EPIRUBICIN, CYCLOPHOSPHAMIDE
AC-T	ADRIAMYCIN CYCLOPHOSPHAMIDE F/ TAXANE
OS	OVERALL SURVIVAL
PFS	PROGRESSION FREE SURVIVAL
DFS	DISEASE FREE SURVIVAL
LVI	LYMPHOVASCULAR INVASION
PNI	PERINEURAL INVASION
DCIS	DUCTAL CARCINOMA IN SITU
LCIS	LOULAR CARCINOMA IN SITU
MTD	MAXIMUM TOLERABLE DOSE
OAR	ORGANS AT RISK
BSC	BEST SUPPORTIVE CARE
GLOBOCAN	GLOBAL CANCER OBSERVATORY
NSABP	NATIONAL SURGICAL ADJUVANT BREAST AND BOWEL PROJECT (NSABP)
CALGB	CANCER AND LEUKEMIA GROUP B
SEER	SURVEILLANCE, EPIDEMIOLOGY, AND END RESULTS PROGRAM
ACOSOG	ALLIANCE FOR CLINICAL TRIALS IN ONCOLOGY
SOFT	SUPPRESSION OF OVARIAN FUNCTION TRIAL
TEXT	TAMOIFEN AND EXEMESTANE TRIAL

EDCTCC	THE EARLY BREAST CANCER TRIALISTS' COLLABORATIVE
EBCICG	GROUP
START	THE UK STANDARDISATION OF BREAST RADIOTHERAPY
FAST	FASTer RADIOTHERAPY FOR BREAST RADIOTHERAPY
OCOG	ONTARIO CLINICAL ONCOLOGY GROUP
TROG	TRANS-TASMAN RADIATION ONCOLOGY GROUP
RMH/GOC	ROYAL MARSDEN HOSPITAL AND GLOUCESTERSHIRE
Kimi/000	ONCOLOGY CENTRE
BACCARAT	BREAST CANCER AND CARDIOTOXICITY INDUCED BY
Direction	RADIOTHERAPY
HF-WBI	HYPOFRACTIONATED- WHOLE BREAST IRRADIATION
CE WBI	CONVENTIONAL FRACTIONATED - WHOLE BREAST
CI-WDI	IRRADIATION
ALND	AXILLARY LYMPH NODE DISSECTION
SLNB	SENTINEL LYMPH NODE IOPSY
PCR	PATHOLOGICAL COMPLETE RESPONSE
PBCR	POPULATION-BASED CANCER REGISTRY
HBCR	HOSPITAL-BASED CANCER REGISTRY
ESMO	EUROPEAN SOCIETY FOR MEDICAL ONCOLOGY.
WHO	WORLD HEALTH ORGANISATION
IHC	IMMUNOHISTOCHEMISTRY
TNBC	TRIPLE NEGATIVE BREAST CANCER
BCS	BREAST CONSERVATIVE SURGERY

MRM	MODIFIED RADICAL MASTECTOMY
PMRT	POST MASTECTOMY RADIOTHERAPY
3DCRT	3D CONFORMAL RADIOTHERAPY
VMAT	VOLUMETRIC MODULATED ARC THERAPY
LAD	LEFT ANTERIOR DESCENDING ARTERY
LCX	LEFT CIRCUMFLEX ARTERY
LCA	LEFT CORONARY ARTERY
MHD	MEAN HEART DOSE
CTRCD	CANCER THERAPY-RELATED CARDIAC DYSFUNCTION
LVEF	LEFT VENTRICULAR EJECTION FRACTION
NT PRO BNP	N-TERMINAL (NT)-PRO HORMONE BNP
MPI	MYOCARDIAL PERFORMANCE INDEX
TWPTE	T WAVE PEAK TO END TIME
BRCA	BREAST CANCER GENE
РІСЗКА	PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE 3-KINASE
I ICJIM	CATALYTIC SUBUNIT ALPHA
PTFN	PHOSPHATASE AND TENSIN HOMOLOG DELETED ON
I ILIY	CHROMOSOME 10
RTOG	RADIATION THERAPY ONCOLOGY GROUP
LA	LOCALLY ADVANCED
LRC	LOCOREGIONAL CONTROL
RFS	RECURRENCE FREE SURVIVAL

DRFI	DISEASE RECURRENCE FREE INTERVAL
BCSS	BREAST CANCER SPECIFIC SURVIVAL
CTRT	CONCURRENT CHEMORADIOTHERAPY
GNI	GROSS NATIONAL INCOME
OC	ORAL CONTRACEPTIVES
HRT	HORMONE REPLACEMENT THERAPY
BD/BID	TWICE DAILY
SBRT	STEREOTACTIC BODY RADIOTHERAPY
R/M	RECURRENT OR METASTATIC
OBD	OPTIMUM BIOLOGICAL DOSE
QLQ	QUALITY OF LIFE QUESTIONNAIRE
ECOG PS	EASTERN COOPERATIVE ONCOLOGY GROUP PERFORMANCE STATUS
LFT	LIVER FUNCTION TEST
KFT	KIDNEY FUNCTION TEST
CBC	COMPLETE BLOOD COUNT
CPMS	COMPUTERISED PATIENT MANAGEMENT SYSTEM
T2DM	TYPE 2 DIAETES MELLITUS
BC	BREAST CANCER
BMI	BODY MASS INDEX
OPD	OUTPATIENT DEPARTMENT

LRR	LOCAL RECURRENCE RATES
MTX	METHOTREXATE
CR	COMPLETE RESPONSE
PD	PROGRESSIVE DISEASE
PR	PARTIAL RESPONSE
CTCAE	COMMON TERMINOLOGY CRITERIA FOR ADVERSE EVENTS

INDEX

S. NO.	CONTENTS	PAGE	
		NO.	
1.	LIST OF TABLES	i-ix	
2.	LIST OF PLOTS	X-XX	
3.	LIST OF FIGURES	Xxi	
4.	LIST OF ANNEXURES	Xxii	
5.	INTRODUCTION	1-4	
6.	AIM AND OBJECTIVES	5	
7.	REVIEW OF LITERATURE	6-22	
8.	MATERIALS AND METHODS	23-27	
9.	RESULTS	28-173	
10.	DISCUSSION	174-184	
11.	CONCLUSION	185-186	
12.	LIMITATIONS OF STUDY	187	
13.	REFERENCES	188-199	
14.	ANNEXURES	200-205	

LIST OF TABLES

S. NO.	TABLE DISCRIPTION	PAGE NO.
1.	FREQUENCY TABLE FOR AGE WISE DISTRIBUTION OF CASES	28
2.	MEASURES OF CENTRAL TENDENCY FOR AGE	29
3.	GENDER WISE DISTRIBUTION OF CASES	29
4.	GEOGRAPHIC REGION WISE DISTRIBUTION OF CASES	30
5.	FREQUENCY TABLE FOR RELIGION WISE DISTRIBUTION OF CASES	31
6.	MEASURES OF CENTRAL TENDENCY FOR HEIGHT	32
7.	MEASURES OF CENTRAL TENDENCY FOR WEIGHT	33
8.	MEASURES OF CENTRAL TENDENCY FOR BSA	34
9.	MEASURES OF CENTRAL TENDENCY FOR BMI	35
10.	FREQUENCY TABLE FOR CLASSIFICATION OF BMI CATEGORIES	36
11.	FREQUENCY TABLE FOR LATERALITY WISE DISTRIBUTION OF CASES	37
12.	FREQUENCY TABLE FOR NUMBER OF RECURRENT OR DE NOVO CASES TREATED	37
13.	FREQUENCY TABLE FOR PRIMARY CLINICAL PRESENTATION	38
14.	FREQUENCY TABLE FOR SECONDARY CLINICAL PRESENTATION	39
15.	FREQUENCY TABLE FOR PATIENTS WITH OR WITHOUT PAIN	39
16.	FREQUENCY TABLE FOR PARITY	40
17.	FREQUENCY TABLE FOR MENSTRUAL STATUS	41

18.	FREQUENCY TABLE FOR COMORBIDITIES	41
19.	FREQUENCY TABLE FOR ADDICTION HISTORY	42
20.	FREQUENCY TABLE FOR RECEIPT OF NACT	43
21.	FREQUENCY TABLE FOR CHEMOTHERAPY REGIMEN	44
22.	FREQUENCY TABLE FOR NUMBER OF NEOADJUVANT CHEMOTHERAPY CYCLES	45
23.	FREQUENCY TABLE FOR NUMBER OF TEC CYCLES	45
24.	MEASURES OF CENTRAL TENDENCY FOR TUMOUR LONGEST AXIS DIAMETER ON IMAGING (MAMMOGRAPHY /CT SCAN)	46
25.	MEASURES OF CENTRAL TENDENCY FOR LYMPH NODE SHORT AXIS DIAMETER	47
26.	FREQUENCY TABLE FOR cT STAGE	48
27.	FREQUENCY TABLE FOR cN STAGE	48
28.	FREQUENCY TABLE FOR cM STAGE	49
29.	FREQUENCY TABLE FOR TNM STAGE	50
30.	FREQUENCY TABLE FOR TYPE OF SURGERY DONE	50
31.	MEASURES OF CENTRAL TENDENCY FOR NUMBER OF DISSECTED NODES	51
32.	FREQUENCY TABLE FOR ADEQUACY OF DISSECTION	52
33.	MEASURES OF CENTRAL TENDENCY FOR NUMBER OF POSITIVE NODES	53
34.	FREQUENCY TABLE FOR PREOPERATIVE HISTOLOGY	54
35.	FREQUENCY TABLE FOR POST OPERATIVE HISTOLOGY	55
36.	FREQUENCY TABLE FOR BLOOM RICHARDSONS SCORE	56

37.	FREQUENCY TABLE FOR BLOOM RICHARDSONS GRADING	57
38.	FREQUENCY TABLE FOR MILLER PAYNE GRADING	58
39.	FREQUENCY TABLE FOR pCR POST NACT	58
40.	FREQUENCY TABLE FOR MARGIN STATUS	58
41.	FREQUENCY TABLE FOR LVSI	59
42.	FREQUENCY TABLE FOR PNI	60
43.	FREQUENCY TABLE FOR ENE	60
44.	FREQUENCY TABLE FOR HER-2 NEU RECEPTOR STATUS BY IMMUNO-HISTOCHEMISTRY	61
45.	FREQUENCY TABLE FOR WHETHER FISH WAS DONE OR NOT	61
46.	FREQUENCY TABLE FOR FISH STATUS	62
47.	FREQUENCY TABLE FOR ESTROGEN RECEPTOR STATUS	63
48.	FREQUENCY TABLE FOR ESTROGEN RECEPTOR ALLRED SCORE	63
49.	FREQUENCY TABLE FOR PROGESTROGEN RECEPTOR STATUS	64
50.	FREQUENCY TABLE FOR PROGESTROGEN RECEPTOR ALLRED SCORE	65
51.	FREQUENCY TABLE FOR SUBTYPE OF BREAST CANCER	65
52.	SUBTYPE OF BREAST CANCER AND MEAN AGE	66
53.	EFFECT OF SUBTYPE ON pCR	67
54.	FREQUENCY TABLE FOR POST OPERATIVE T STAGING	67

55.	FREQUENCY TABLE FOR POST OPERATIVE N STAGING	69
56.	MEASURES OF CENTRAL TENDENCY FOR POST-OPERATIVE PRIMARY TUMOUR LONG AXIS DIAMETER	70
57.	FREQUENCY TABLE FOR PRESENCE OF DCIS/LCIS	71
58.	FREQUENCY TABLE FOR UNIFOCAL/MULTIFOCAL DCIS/LCIS	72
59.	MEASURES OF CENTRAL TENDENCY FOR MITOTIC COUNTS	72
60.	FREQUENCY TABLE FOR RECEIPT OF ADJUVANT CHEMOTHERAPY	73
61.	FREQUENCY TABLE FOR ADJUVANT CHEMOTHERAPY REGIMENS	74
62.	FREQUENCY TABLE FOR ADJUVANT CHEMOTHERAPY CYCLES	75
63.	FREQUENCY TABLE FOR RECEIPT OF HORMONAL THERAPY	75
64.	FREQUENCY TABLE FOR HORMONAL THERAPY AGENTS	76
65.	FREQUENCY TABLE FOR DURATION OF RT	77
66.	MEASURES OF CENTRAL TENDENCY FOR DURATION OF RT	76
67.	FREQUENCY TABLE FOR DURATION FROM SURGERY TO START OF RT	77
68.	MEASURES OF CENTRAL TENDENCY FOR DURATION FROM SURGERY TO START OF RT	78
69.	FREQUENCY TABLE FOR RADIOTHERAPY TECHNIQUE	78
70.	FREQUENCY TABLE FOR RADIOTHERAPY DOSE REGIMEN	79
71.	FREQUENCY TABLE FOR LUMPECTOMY BOOST REGIMEN	80
72.	FREQUENCY TABLE FOR TIME TILL POST RT FOLLOW UP	80
73.	MEASURES OF CENTRAL TENDENCY FOR TIME TILL POST RT FOLLOW UP	81

74.	FREQUENCY TABLE FOR RESPONSE POST RADIOTHERAPY	82
75.	MEASURES OF CENTRAL TENDENCY FOR DOSES TO HEART AND CARDIAC SUBSTRUCTURES IN PATIENTS WHO RECEIVED 42.56 GY/16#.	82,83
76.	EFFECT OF LATERALITY ON DOSES TO HEART AND CARDIAC SUBSTRUCTURES	83
77.	FREQUENCY TABLE FOR PROGRESSIVE DISEASE AT LAST FOLLOW UP	83
78.	FREQUENCY TABLE FOR LOCAL VS DISTANT RECURRENCE	84
79.	FREQUENCY TABLE FOR SITE OF DISTANT METASTASIS	85
80.	FREQUENCY TABLE FOR TREATMENT RECEIVED FOR RECURRENCE	86
81.	FREQUENCY TABLE FOR SURVIVAL STATUS AT LAST FOLLOW UP	86
82.	FREQUENCY TABLE FOR CAUSE OF DEATH	87
83.	FREQUENCY TABLE FOR SURVIVAL AT LAST FOLLOW UP	88
84.	MEASURES OF CENTRAL TENDENCY FOR SURVIVAL AT LAST FOLLOW UP	89
85.	TABLE FOR SITE-WISE OS, RFS, DFS AT LAST FOLLOW UP	89
86.	FREQUENCY TABLE FOR PFS/RFS AT LAST FOLLOW UP	90
87.	MEASURES OF CENTRAL TENDENCY FOR PFS/RFS AT LAST FOLLOW UP	91
88.	FREQUENCY TABLE FOR DFS AT LAST FOLLOW UP	91
89.	MEASURES OF CENTRAL TENDENCY FOR DFS AT LAST FOLLOW UP	92
90.	FREQUENCY TABLE FOR NT-PRO BNP LEVELS AT FOLLOW UP	92
91.	FREQUENCY TABLE FOR LVEF LEVELS AT FOLLOW UP	92

92.	FREQUENCY TABLE FOR MPI LEVELS AT FOLLOW UP	94
93.	FREQUENCY TABLE FOR CORRECTED QT INTERVAL LEVELS AT FOLLOW UP	94
94.	MEASURES OF CENTRAL TENDENCY FOR MARKERS OF SUBCLINICAL CARDIOTOXICITY AT LAST FOLLOW UP	95
95.	MEDIAN DURATION OF FOLLOW UP BY REVERSE KAPLAN MEIER ANALYSIS	96
96.	SURVIVAL ANALYSIS-DEMOGRAPHIC VARIABLES COX REGRESSION SURVIVAL ANALYSIS	97
97.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY RELIGION	98
98.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY AGE WISE DISTRIBUTION	98
99.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY COMORBIDITY STATUS	99
100.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY BMI BASED CATEGORIES	100
101.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY LATERALITY	101
102.	MEANS AND MEDIANS FOR OVERALL SURVIVAL TIME STRATIFIED BY MENSTRUAL STATUS	102
103.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY RELIGION	105
104.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY AGE WISE DISTRIBUTION	103
105.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY COMORBIDITY STATUS	106
106.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY BMI BASED CATEGORIES	104
107.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY LATERALITY	108
108.	MEANS AND MEDIANS FOR PFS/RFS TIME STRATIFIED BY MENSTRUAL STATUS	107
109.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY RELIGION	111

110.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY AGE WISE DISTRIBUTION	109
111.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY COMORBIDITY STATUS	112
112.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY BMI BASED CATEGORIES	110
113.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY LATERALITY	114
114.	MEANS AND MEDIANS FOR DFS TIME STRATIFIED BY MENSTRUAL STATUS	113
115.	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON OVERALL SURVIVAL BY COX REGRESSION ANALYSIS	115
116.	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON PFS/RFS BY COX REGRESSION ANALYSIS	117
117.	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON DFS BY COX REGRESSION ANALYSIS	119
118.	MEANS AND MEDIANS FOR EFFECT OF NEOADJUVANT CHEMOTHERAPY STATUS ON DFS	120
119.	MEANS AND MEDIANS FOR EFFECT OF PRE SURGICAL STAGING STATUS ON DFS	121
120.	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER OF POSITIVE NODES ON OVERALL SURVIVAL BY COX REGRESSION ANALYSIS	122
121.	MEANS AND MEDIANS FOR EFFECT OF ADEQUACY OF NODAL DISSECTION ON OVERALL SURVIVAL	123
122.	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER OF POSITIVE NODES ON PFS/RFS BY COX REGRESSION ANALYSIS	125
123.	MEANS AND MEDIANS FOR EFFECT OF ADEQUACY OF NODAL DISSECTION ON PFS/RFS	126
124.	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER OF POSITIVE NODES ON DFS BY COX REGRESSION ANALYSIS	128
125.	MEANS AND MEDIANS FOR EFFECT OF ADEQUACY OF NODAL DISSECTION ON DFS	129
126.	MEANS AND MEDIANS FOR EFFECT OF MARGIN STATUS ON OS	132

127.	MEANS AND MEDIANS FOR EFFECT OF LVSI ON OS	133
128.	MEANS AND MEDIANS FOR EFFECT OF PNI ON OS	134
129.	MEANS AND MEDIANS FOR EFFECT OF ENE ON OS	134
130.	EFFECT OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON OS BY COX REGRESSION ANALYSIS	135
131.	EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON OS	136
132.	EFFECT OF MOLECULAR SUBTYPE ON OS	137
133.	EFFECT OF POST OPERATIVE N STAGE ON OS	139
134.	MEANS AND MEDIANS FOR EFFECT OF HISTOLOGICAL GRADE ON PFS/RFS	140
135.	MEANS AND MEDIANS FOR EFFECT OF MARGIN STATUS ON PFS/RFS	141
136.	EFFECT OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON PFS/RFS BY COX REGRESSION ANALYSIS	143
137.	EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON PFS/RFS	144
138.	EFFECT OF MOLECULAR SUBTYPE ON PFS/RFS	145
139.	EFFECT OF POST OPERATIVE N STAGE ON PFS/RFS	147
140.	MEANS AND MEDIANS FOR EFFECT OF HISTOLOGICAL GRADE ON DFS	148
141.	MEANS AND MEDIANS FOR EFFECT OF MARGIN STATUS ON DFS	149
142.	MEANS AND MEDIANS FOR EFFECT OF LVSI ON DFS	150
143.	MEANS AND MEDIANS FOR EFFECT OF PNI ON DFS	151
144.	MEANS AND MEDIANS FOR EFFECT OF ENE ON DFS	152

145.	EFFECT OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON DFS BY COX REGRESSION ANALYSIS	153
146.	MEANS AND MEDIANS FOR EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON DFS	154
147.	MEANS AND MEDIANS FOR EFFECT OF MOLECULAR SUBTYPE ON DFS	155
148.	MEANS AND MEDIANS FOR EFFECT OF POST OPERATIVE N STAGE ON DFS	156
149.	EFFECT OF TIME FROM DATE OF SURGERY TO START OF RT AND DURATION OF RADIOTHERAPY ON OVERALL SURVIVAL BY CO X REGRESSION ANALYSIS	157,158
150.	MEANS AND MEDIANS FOR EFFECT OF RADIOTHERAPY TECHNIQUE ON OS	159
151.	EFFECT OF TIME FROM DATE OF SURGERY TO START OF RT AND DURATION OF RADIOTHERAPY ON RFS/PFS BY COX REGRESSION ANALYSIS	161
152.	MEANS AND MEDIANS FOR EFFECT OF HORMONAL THERAPY AGENT ON PFS/RFS	162
153.	MEANS AND MEDIANS FOR EFFECT OF RADIOTHERAPY TECHNIQUE ON PFS/RFS	163
154.	EFFECT OF TIME FROM DATE OF SURGERY TO START OF RT AND DURATION OF RADIOTHERAPY ON DFS BY COX REGRESSION ANALYSIS	165
155.	MEANS AND MEDIANS FOR EFFECT OF ADJUVANT CHEMOTHERAPY RECEIPT ON DFS	165
156.	MEANS AND MEDIANS FOR EFFECT OF HORMONAL THERAPY AGENT ON DFS	166
157.	MEANS AND MEDIANS FOR EFFECT OF RADIOTHERAPY TECHNIQUE ON DFS	167
158.	CORRELATION BETWEEN RADIATION DOSES TO HEART,LEFT CORONARY ARTERY, LEFT CIRCUMFLEX ARTERY, LEFT ANTERIOR DESCENDING ARTERY WITH MARKERS OF SUBCLINICAL CARDIOTOXICITY-MPI, LVEF, TWPTE, NT-PROBNP	169-171
159.	QUALITATIVE ANALYSIS OF THE CAUSES AND FACTORS RESPONSIBLE FOR DEATH	172

LIST OF GRAPHS/PLOTS

S. NO.	GRAPH/PLOT DISCRIPTION	PAGE NO.
1.	BAR CHART FOR AGE WISE DISTRIBUTION OF CASES	28
2.	PIE CHART DEMONSTRATING GENDER WISE DISTRIBUTION OF CASES	29
3.	PIE CHART FOR GEOGRAPHIC REGION WISE DISTRIBUTION OF CASES	30
4.	PIE CHART FOR RELIGION WISE DISTRIBUTION OF CASES	31
5.	FREQUENCY HISTOGRAM FOR HEIGHT WISE DISTRIBUTION OF CASES	32
6.	FREQUENCY HISTOGRAM FOR WEIGHT WISE DISTRIBUTION OF CASES	33
7.	FREQUENCY HISTOGRAM FOR BSA WISE DISTRIBUTION OF CASES	34
8.	FREQUENCY HISTOGRAM FOR BMI WISE DISTRIBUTION OF CASES	35
9.	BAR CHART FOR BMI WISE CLASSIFICATION OF CASES	36
10.	PIE CHART FOR LATERALITY WISE DISTRIBUTION OF CASES	37
11.	PIE CHART FOR DE NOVO VS RECURRENCE WISE DISTRIBUTION OF CASES	37
12.	PIE CHART FOR PRIMARY CLINICAL PRESENTATION	38
13.	PIE CHART FOR SECONDARY CLINICAL PRESENTATION	39
14.	PIE CHART FOR PATIENTS WITH OR WITHOUT PAIN	40
15.	PIE CHART FOR PARITY	40

16.	PIE CHART FOR MENSTRUAL STATUS	41
17.	BAR CHART FOR COMORDITIES	42
18.	PIE CHART FOR ADDICTION HISTORY	43
19.	PIE CHART FOR RECEIPT OF NACT	43
20.	PIE CHART FOR NACT REGIMENS	44
21.	HORIZONTAL BAR CHART FOR NUMBER OF NACT CYCLES	45
22.	FREQUENCY HISTOGRAM FOR TUMOUR LONGEST AXISDIAMETER ON IMAGING (MAMMOGRAPHY /CT SCAN)	46
23.	FREQUENCY HISTOGRAM FOR LYMPH NODE SHORT AXIS DIAMETER	47
24.	HORIZONTAL BAR CHART FOR cT STAGE	48
25.	HORIZONTAL BAR CHART FOR cN STAGE	49
26.	HORIZONTAL BAR CHART FOR cM STAGE	49
27.	BAR CHART FOR TNM STAGING	50
28.	BAR CHART FOR TYPE OF SURGERY DONE	51
29.	FREQUENCY HISTOGRAM FOR NUMBER OF DISSECTED NODES	52
30.	BAR CHART FOR FREQUENCY TABLE FOR ADEQUACY OF DISSECTION	52
31.	FREQUENCY HISTOGRAM FOR NUMBER OF POSITIVE NODES	53
32.	BAR CHART FOR PREOPERATIVE HISTOLOGY	54
33.	BAR CHART FOR POST OPERATIVE HISTOLOGY	56
34.	BAR CHART FOR BLOOM RICHARDSONS SCORE	56

35.	PIE CHART FOR BLOOM RICHARDSONS GRADING	57
36.	PIE CHART FOR MILLER PAYNE GRADING	57
37.	BAR CHART FOR pCR POST NACT	58
38.	PIE CHART FOR MARGIN STATUS	59
39.	PIE CHART FOR LVSI STATUS	59
40.	PIE CHART FOR PNI STATUS	60
41.	PIE CHART FOR ENE STATUS	60
42.	BAR CHART FOR HER 2 NEU STATUS	61
43.	PIE CHART FOR WHETHER FISH WAS DONE OR NOT	62
44.	PIE CHART FOR FISH STATUS	62
45.	PIE CHART FOR ESTROGEN RECEPTOR STATUS	63
46.	BAR CHART FOR ESTROGEN RECEPTOR ALLRED SCORE	64
47.	PIE CHART FOR PROGESTROGEN RECEPTOR STATUS	64
48.	BAR CHART FOR PROGESTROGEN RECEPTOR ALLRED SCORE	65
49.	PIE CHART FOR SUBTYPE OF BREAST CANCER	66
50.	LINE PLOT FOR SUBTYPE OF BREAST CANCER AND MEAN AGE	66
51.	BAR CHART FOR POST OPERATIVE T STAGING	68
52.	BAR CHART FOR POST OPERATIVE N STAGING	69,70

53.	FREQUENCY HISTOGRAM FOR POST-OPERATIVE PRIMARY TUMOUR LONG AXIS DIAMETER	71
54.	PIE CHART FOR PRESENCE OF DCIS/LCIS	71
55.	PIE CHART FOR UNIFOCAL/MULTIFOCAL DCIS/LCIS	72
56.	FREQUENCY HISTOGRAM FOR FOR MITOTIC COUNTS	73
57.	PIE CHART FOR RECEIPT OF ADJUVANT CHEMOTHERAPY	73
58.	BAR CHART FOR ADJUVANT CHEMOTHERAPY REGIMENS	74
59.	PIE CHART FOR RECEIPT OF HORMONAL THERAPY	75
60.	PIE CHART FOR HORMONAL THERAPY AGENTS	76
61.	FREQUENCY HISTOGRAM FOR DURATION OF RT	77
62.	BAR CHART FOR DURATION FROM SURGERY TO START OF RT	78
63.	PIE CHART FOR RADIOTHERAPY TECHNIQUE	79
64.	PIE CHART FOR RADIOTHERAPY DOSE REGIMEN	79
65.	PIE CHART FOR LUMPECTOMY BOOST REGIMEN	80
66.	BAR CHART FOR TIME TILL POST RT FOLLOW UP	81
67.	PIE CHART FOR RESPONSE POST RADIOTHERAPY	82
68.	PIE CHART FOR PROGRESSIVE DISEASE AT LAST FOLLOW UP	84
69.	PIE CHART FOR LOCAL VS DISTANT RECURRENCE	84
70.	PIE CHART FOR SITE OF DISTANT METASTASIS	85

71.	BAR CHART FOR TREATMENT RECEIVED FOR RECURRENCE	86
72.	PIE CHART FOR SURVIVAL STATUS AT LAST FOLLOW UP	87
73.	PIE CHART FOR CAUSE OF DEATH	87
74.	BAR CHART FOR SURVIVAL AT LAST FOLLOW UP	88
75.	BAR CHART FOR RFS AT LAST FOLLOW UP	90
76.	BAR CHART FOR DFS AT LAST FOLLOW UP	91
77.	BAR CHART FOR NT-PRO BNP LEVELS AT FOLLOW UP	93
78.	BAR CHART FOR LVEF LEVELS AT FOLLOW UP	93
79.	BAR CHART FOR MPI LEVELS AT FOLLOW UP	94
80.	BAR CHART FOR CORRECTED QT INTERVAL LEVELS AT FOLLOW UP	95
81.	SCATTER PLOT SHOWING ANALYSIS OF TIME FOR END OF RADIOTHERAPY AND RELATION WITH MARKERS OF SUBCLINICAL CARDIOTOXICITY	96
82.	KAPLAN MEIER CURVES FOR SURVIVAL TIME STRATIFIED BY RELIGION	97
83.	KAPLAN MEIER CURVES FOR OVERALL SURVIVAL TIMESTRATIFIED BY AGE WISE DISTRIBUTION	98
84.	KAPLAN MEIER CURVES FOR OVERALL SURVIVAL TIME STRATIFIED BY COMORBIDITY STATUS	99
85.	KAPLAN MEIER CURVES FOR OVERALL SURVIVAL TIME STRATIFIED BY BMI BASED CATEGORIES	100
86.	KAPLAN MEIER CURVES FOR OVERALL SURVIVAL TIME STRATIFIED BY LATERALITY	101
87.	KAPLAN MEIER CURVES FOR OVERALL SURVIVAL TIME	102

	STRATIFIED BY MENSTRUAL STATUS	
88.	KAPLAN MEIER CURVES FOR PFS/RFS STRATIFIED BY RELIGION	105
89.	KAPLAN MEIER CURVES FOR PFS/RFS TIME STRATIFIED BY AGE WISE DISTRIBUTION	103
90.	KAPLAN MEIER CURVES FOR PFS/RFS TIME STRATIFIED BY COMORBIDITY STATUS	106
91.	KAPLAN MEIER CURVES FOR PFS/RFS TIME STRATIFIED BY BMI BASED CATEGORIES	104
92.	KAPLAN MEIER CURVES FOR PFS/RFS TIME STRATIFIED BY LATERALITY	108
93.	KAPLAN MEIER CURVES FOR PFS/RFS TIME STRATIFIED BY MENSTRUAL STATUS	107
94.	KAPLAN MEIER CURVES FOR DFS STRATIFIED BY RELIGION	111
95.	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY AGE WISE DISTRIBUTION	109
96.	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY COMORBIDITY STATUS	112
97.	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY BMI BASED CATEGORIES	110
98.	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY LATERALITY	114
99.	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY MENSTRUAL STATUS	113
100.	KAPLAN MEIER CURVES FOR OS TIME STRATIFIED BY PRE SURGICAL STAGING	115
101.	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON OVERALL SURVIVAL BY COX REGRESSION ANALYSIS- A SURVIVAL CURVE AT MEAN OF COVARIATES	116

102.	KAPLAN MEIER CURVES FOR EFFECT OF NEOADJUVANT	116
	CHEMOTHERAPY STATUS ON OVERALL SURVIVAL	110
	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND	
102	SHORT AXIS NODAL DIAMETER ON RFS/DFS BY COX	117
105.	REGRESSION ANALYSIS- A SURVIVAL CURVE AT MEAN OF	
	COVARIATES	
104	KAPLAN MEIER CURVES FOR EFFECT OF NEOADJUVANT	110
104.	CHEMOTHERAPY STATUS ON RFS/DFS	110
105	KAPLAN MEIER CURVES FOR RFS/DFS TIME STRATIFIED	110
105.	BY PRE-SURGICAL STAGING	110
	EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND	
106	SHORT AXIS NODAL DIAMETER ON DFS BY COX	110
100.	REGRESSION ANALYSIS- A SURVIVAL CURVE AT MEAN OF	117
	COVARIATES	
107	KAPLAN MEIER CURVES FOR EFFECT OF NEOADJUVANT	120
107.	CHEMOTHERAPY STATUS ON DFS	120
108	KAPLAN MEIER CURVES FOR DFS TIME STRATIFIED BY	121
100.	PRE SURGICAL STAGING	121
	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER	
109	OF POSITIVE NODES ON OVERALL SURVIVAL BY COX	122
107.	REGRESSION ANALYSIS- A SURVIVAL CURVE AT MEAN OF	122
	COVARIATES	
110	KAPLAN MEIER CURVES FOR EFFECT OF ADEQUACY OF	123
110.	NODAL DISSECTION ON OVERALL SURVIVAL	125
111	KAPLAN MEIER CURVES FOR EFFECT OF TYPE OF	124
111.	SURGERY ON OVERALL SURVIVAL	124
	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER	
112.	OF POSITIVE NODES ON RFS/PFS BY COX REGRESSION	125
	ANALYSIS- A SURVIVAL CURVE AT MEAN OF	125
	COVARIATES	
113.	KAPLAN MEIER CURVES FOR EFFECT OF ADEQUACY OF	127
	NODAL DISSECTION ON RFS/PFS	121

114.	KAPLAN MEIER CURVES FOR EFFECT OF TYPE OF SURGERY ON RFS/PFS	127
115.	EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER OF POSITIVE NODES ON DFS BY COX REGRESSION ANALYSIS- A SURVIVAL CURVE AT MEAN OF COVARIATES	128
116.	KAPLAN MEIER CURVES FOR EFFECT OF ADEQUACY OF NODAL DISSECTION ON DFS	130
117.	KAPLAN MEIER CURVES FOR EFFECT OF TYPE OF SURGERY ON DFS	130
118.	KAPLAN MEIER CURVES FOR EFFECT OF MODIFIED BLOOM RICHARDSON SCORE ON OS	131
119.	KAPLAN MEIER CURVES FOR EFFECT OF GRADE OF TUMOUR ON OS	131
120.	KAPLAN MEIER CURVES FOR EFFECT OF MARGIN STATUS ON OS	132
121.	KAPLAN MEIER CURVES FOR EFFECT OF LVSI ON OS	133
122.	KAPLAN MEIER CURVES FOR EFFECT OF PNI ON OS	134
123.	KAPLAN MEIER CURVES FOR EFFECT OF ENE ON OS	135
124.	A SURVIVAL CURVE AT MEAN OF COVARIATES -EFFECT OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON OS BY COX REGRESSION ANALYSIS	136
125.	KAPLAN MEIER CURVES FOR EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON OS	137
126.	KAPLAN MEIER CURVES FOR EFFECT OF MOLECULAR SUBTYPE ON OS	138
127.	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE T STAGE ON OS	138
128.	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE N STAGE ON OS	139

129.	KAPLAN MEIER CURVES FOR EFFECT OF MODIFIED BLOOM RICHARDSON SCORE ON PFS/RFS	140
130.	KAPLAN MEIER CURVES FOR EFFECT OF GRADE OF TUMOUR ON PFS/RFS	141
131.	KAPLAN MEIER CURVES FOR EFFECT OF MARGIN STATUS ON PFS/RFS	142
132.	KAPLAN MEIER CURVES FOR EFFECT OF LVSI ON PFS/RFS	142
133.	KAPLAN MEIER CURVES FOR EFFECT OF PNI ON PFS/RFS	143
134.	KAPLAN MEIER CURVES FOR EFFECT OF ENE ON PFS/RFS	143
	A SURVIVAL CURVE AT MEAN OF COVARIATES -EFFECT	
135.	OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON	144
	PFS/RFS BY COX REGRESSION ANALYSIS	
126	KAPLAN MEIER CURVES FOR EFFECT OF PRESENCE OR	145
150.	ABSENCE OF DCIS/LCIS ON PFS/RFS	145
127	KAPLAN MEIER CURVES FOR EFFECT OF MOLECULAR	146
137.	SUBTYPE ON PFS/RFS	140
138	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE	146
130.	T STAGE ON PFS/RFS	140
100	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE	147
139.	N STAGE ON PFS/RFS	147
140	KAPLAN MEIER CURVES FOR EFFECT OF MODIFIED	149
140.	BLOOM RICHARDSON SCORE ON DFS	140
1.4.1	KAPLAN MEIER CURVES FOR EFFECT OF GRADE OF	140
141.	TUMOUR ON DFS	149
142	KAPLAN MEIER CURVES FOR EFFECT OF MARGIN STATUS	150
142.	ON DFS	150
143.	KAPLAN MEIER CURVES FOR EFFECT OF LVSI ON DFS	151
144.	KAPLAN MEIER CURVES FOR EFFECT OF PNI ON DFS	152

145.	KAPLAN MEIER CURVES FOR EFFECT OF ENE ON DFS	153	
146.	A SURVIVAL CURVE AT MEAN OF COVARIATES -EFFECT		
	OF POST OPERATIVE TUMOR LONG AXIS DIAMETER ON	153	
	DFS BY COX REGRESSION ANALYSIS		
147.	KAPLAN MEIER CURVES FOR EFFECT OF PRESENCE OR	154	
	ABSENCE OF DCIS/LCIS ON DFS		
1/18	KAPLAN MEIER CURVES FOR EFFECT OF MOLECULAR	155	
148.	SUBTYPE ON DFS	155	
1/0	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE	156	
149.	T STAGE ON DFS	150	
150	KAPLAN MEIER CURVES FOR EFFECT OF POST OPERATIVE	157	
150.	N STAGE ON DFS	157	
	A SURVIVAL CURVE AT MEAN OF COVARIATES -EFFECT		
151	OF TIME FROM DATE OF SURGERY TO START OF RT AND	158	
151.	DURATION OF RADIOTHERAPY ON OS BY COX		
	REGRESSION ANALYSIS		
152	KAPLAN MEIER CURVES FOR EFFECT OF ADJUVANT	158	
152.	CHEMOTHERAPY RECEIPT ON OS	150	
152	KAPLAN MEIER CURVES FOR EFFECT OF HORMONAL	159	
155.	THERAPY AGENT ON OS	157	
154	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY	160	
154.	TECHNIQUE ON OS	100	
155	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY	160	
155.	DOSES ON OS	100	
	A SURVIVAL CURVE AT MEAN OF COVARIATES -EFFECT		
156	OF TIME FROM DATE OF SURGERY TO START OF RT AND	161	
130.	DURATION OF RADIOTHERAPY ON PFS/RFS BY COX	101	
	REGRESSION ANALYSIS		
157.	KAPLAN MEIER CURVES FOR EFFECT OF ADJUVANT	162	
	CHEMOTHERAPY RECEIPT ON PFS/RFS	102	
158.	KAPLAN MEIER CURVES FOR EFFECT OF HORMONAL	163	
	THERAPY AGENT ON PFS/RFS	105	

159.	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY TECHNIQUE ON PFS/RFS	164
160.	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY DOSES ON PFS/RFS	164
161.	KAPLAN MEIER CURVES FOR EFFECT OF ADJUVANT CHEMOTHERAPY RECEIPT ON DFS	166
162.	KAPLAN MEIER CURVES FOR EFFECT OF HORMONAL THERAPY AGENT ON DFS	167
163.	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY TECHNIQUE ON DFS	168
164.	KAPLAN MEIER CURVES FOR EFFECT OF RADIOTHERAPY DOSES ON DFS	168

LIST OF FIGURES

S. NO.	GRAPH DISCRIPTION	PAGE NO.
1.	LINAC	26
2.	BREAST BOARD	26
3.	PATIENT ON LINAC	26
4.	TREATMENT PLAN	27

LIST OF ANNEXURES

S. NO.	ANNEXURE	PAGE NO.
1.	PROFORMA FOR FOLLOW UP DATA COLLECTION	200
2.	CARDIAC PROFORMA	201
3.	BREAST CANCER AJCC TNM PROGNOSTIC STAGE CLASSIFICATION EDITION 8 TH	202-204
4.	ETHICAL COMMITTEE CERTIFICATE	205
INTRODUCTION

BACKGROUND BURDEN OF DISEASE:

With the advances in medical sciences heralding in an era where mortality due to diseases such as stroke and coronary heart disease are on a decline; cancer is now taking the spotlight as one of the leading causes of death worldwide with an estimated count of 1.3 million new cancer cases and 10 million cancer deaths worldwide in 2020. With an incidence of 2.3 million cases, female Breast cancer has now overtaken Lung cancer as the most commonly diagnosed cancer worldwide.(1) Breast cancer is also the most common cancer among Indian females with an age adjusted rate of 25.8 per 100,000 women and mortality of 12.7 per 100,000 women (2)

When compared to the Western population, Indian women's breast cancer epidemiology is very different. In India, a bigger percentage of breast cancer patients tend to be premenopausal, and the peak age is between 40 and 50 years. In the Western world, the median age of women at the time of breast cancer diagnosis is roughly 61 years, with the peak age being 60 to 70 years.(3)

OVERVIEW OF STAGING AND SUBTYPES:

Invasive ductal carcinoma and invasive lobular carcinoma account for 80% to 85% and 10% to 15% of all occurrences, respectively, of invasive breast cancer. The remaining 1% of invasive breast cancers are other histologic cancer subtypes.

The expression of biomarkers such the human epidermal growth factor receptor 2 (HER-2), progesterone receptor (PR), and oestrogen receptor (ER) determines how IHC is characterized. Approximately 75% of patients with breast cancer are thought to have hormone receptor (HR)-positive pathology, defined as having ER and PR expression of greater than 1%. Additionally, according to IHC measurements, HER2 is amplified or overexpressed in 15% to 30% of breast cancer cases. Triple-negative breast cancer (TNBC) refers to tumours that do not express ER, PR, or overexpress HER2. These tumours are more aggressive and have greater metastasis and recurrence rates than other breast cancer subtypes. The prevalence of TNBC is estimated to be 31% in India, which is substantially greater than the prevalence of 12% to 17% in the West. Lehmann et al. further identified the different groups named in TNBC subtypes Basal like-1, Basal like-2, Immunomodulatory,

Mesenchymal, Mesenchymal Stem Cell like, and Luminal Androgen depending upon expression of distinct genes(4)

The American Joint Committee on Cancer's Cancer Staging Manual, 8th edition, expanded breast cancer staging in 2017 by integrating prognostic biomarkers (such as histologic tumour grade, ER, PR, HER2, and multigene test-based risk prediction) with the traditional anatomic TNM staging. This was done in consideration of the significance of molecular characterization. There are currently many different combinations of anatomical, clinical, and prognostic breast cancer stages as a result of this.(3)

MOLECULAR PATHOGENESIS AND RISK FACTORS FOR BREAST CANCER

There are three main genetic routes for cancer development(5):

1)**Dominant route** (50-60%): Individuals with germline BRCA2 mutations inherit them. These cancers frequently have chromosome 16q loss, gain in chromosome 1q and mutations to PIK3CA. These cancers lack HER2 and are ER positive. As their mRNA expression pattern resembles that of healthy breast luminal cells, ER positive tumors are often known as "luminal" cancers.

2) **Pathway connected to HER2 gene amplifications on chromosome 17q:** These make up 20% of malignancies. They are ER-positive or ER-negative tumors that are HER2-positive. TP53 germline mutations are most frequently associated with this pathway breast cancer in patients (Li-Fraumeni syndrome)

3) **Pathway independent of ER-mediated changes in gene expression & HER2 gene amplifications:** This subtype includes 15% of all cases of breast cancer. They are HER2 and ER-negative. Germline BRCA1 mutations are frequently linked to tumors. Associated with mutations in TP53.The "basal like" pattern of mRNA expression found in tumors resembles that of healthy myoepithelial cells.

Risk factors for breast carcinoma include Age ,Age at menarche , Age at first live birth , First degree relatives with breast cancer , Atypical hyperplasia , Race/Ethnicity , Estrogen exposure , Breast density , Radiation exposure , Prior Benign breast disease , Diet - Alcohol , Obesity , Breast feeding , Carcinoma of contralateral breast(5)

Maria at al demonstrated that 9 risk factors had potential causal effects on breast cancerspecific survival: alcohol consumption, BMI, height, mammographic density, menarche, menopause, physical activity, smoking, and T2DM.(6)

CLINICAL PRESENTATION:

Since there are few mammographic facilities in this area and no national breast-screening program, breast lumps continue to be the most common mode of presentation; In addition to this, the prevalence of traditional medicine practitioners in many locations, genetic, social, and cultural factors, as well as the proximity to medical centers with cancer facilities, have a significant impact on incidence and survival.(7)Younger age group has been associated with larger tumor size, higher number of metastatic lymph node, poor grade, low rate of hormone receptor status and poorer overall survival. (8)

MANAGEMENT OF BREAST CANCER

BC management is multidisciplinary and has advanced significantly. Mastectomy followed by adjuvant chemotherapy was once a common course of treatment for locally advanced BC, triple-negative breast cancer, and tumors expressing HER2neu (human epidermal growth factor receptor. Currently, it combines both a systemic therapy method that targets the entire body and a loco-regional approach that uses surgery and radiation therapy to focus on just the tumor. Endocrine therapy, chemotherapy, anti-HER2 therapy, bone stabilizing drugs, polymerase inhibitors for BRCA (breast cancer gene) mutation carriers, and, more recently, immunotherapy are all examples of systemic therapy. But the majority of patients continue to have primary ablative surgeries. A promising method for diagnosing diseases with hormone receptors is gene expression profiling.

We have come a long way from employing chemotherapy medications like cyclophosphamide, methotrexate, etc. in the 1970s to using their modified procedures such anthracycline-based combination chemotherapy in the 1980s and 1990s. The most recent additions, taxanes, have a bright future. In order to lessen normal tissue toxicity and overall treatment time, BC radiation therapy has progressed from 2D to 3D conformal radiotherapy and expedited partial breast irradiation. Intensity-modulated radiation therapy and deep inspiration breath-hold are two of the more recent advances, although they are still out of reach for many people. With brachytherapy, the situation is the same.

Triple-negative breast cancer has terrible prognoses, and the only real therapeutic option is systemic chemotherapy. The current landscape of BC treatment may shift as a result of immunotherapy, poly(adenosine diphosphate-ribose) polymerase inhibitors, and antibody-drug conjugates. Therefore, making a sensible choice is crucial.

A practical alternative to complete mastectomy and breast conservation therapy is provided by the rapidly developing specialty of oncoplastic breast surgery. Oncoplastic breast surgery is still in its infancy but is anticipated to become widely used in the near future due to its economic viability, cost-effectiveness, and suitability for a low-resource country like India.(9)

PROGNOSIS OF BREAST CANCER

The prognosis of breast cancer patients in India as seen by P. Viral et al showed an 10 year overall survival(OS) of 66% and Breast cancer specific survival(BCSS) of 70%(10) which is comparable to the global average (11). Increase in breast cancer survival also becomes apparent as we trace follow up data over the years (12)which can be mainly attributed to the myriad improvements and discoveries made in managing breast cancer from Halstead's Radical mastectomy to Patey's modification of Halstead approach, Bernard Fisher's contributions in Breast conservative surgery to impact of Oophorectomy as shown by Thomas Beatson, in the surgical aspect; as well as development of more effective and lesser toxic Radiotherapy and chemotherapy regimens through the years.

The risk of disease recurrence has shown to have decreased with radiation from 60% to 70% and 50% to 60%, for invasive and non-invasive breast cancer respectively, by a variety of studies(13–16). Newer techniques are being researched to further decrease dose to normal tissue and Organs at risk such as heart and lung. Some studies have even shown dose to coronary arteries as a better surrogate marker to cardiac toxicity compared to mean heart dose.

This study aims at evaluating patients of non-metastatic breast cancer who have received adjuvant radiation at our center and correlating risk factors, prognostic factors and survival outcomes in the same.

AIMS AND OBJECTIVES

Aim of study-

To study the survival outcomes, prognostic and treatment related factors in patients of breast cancer treated with post-operative radiation therapy in AIIMS, Jodhpur.

Objectives-

Primary Objective-

1. To assess the treatment outcomes as Overall Survival, Disease-free survival, Progression-free survival.

2. To study various dose related parameters to the target, Organs at Risk (OARs) like Heart, Coronary vessels ; biopsy and IHC status and available clinical information about cardiac health including investigations like Echocardiography if done.

Secondary Objective-

1) Assessing the demographic profile of the patients suffering from the disease.

REVIEW OF LITERATURE

Epidemiology:

The advances in the management of breast cancer have now brought hope to the patients suffering from this commonest malignancy of females worldwide. The prognosis also depends on many factors including the quality of health care received. A recent study by Sankaranarayanan et al showed that patients of localized breast cancer and metastatic breast cancer had a 5 year OS of 89.6% and 26.7% respectively in countries such as Hong Kong, Singapore, and Turkey, where health services are well developed with advanced diagnostic and treatment centers and high per head GNI values; compared to a 5 year OS of 76.3% and 14.9% respectively in countries such as India, Costa Rica, Philippines, etc. with moderately developed facilities.(17)

The International agency for research on cancer has shown a projected estimate of 0.27 million and 3 million new breast cancer cases in India and worldwide respectively between 2020 and 2040 with an estimated mortality of 0.15 million and 1 million in India and worldwide respectively, during the same duration with almost half the world breast cancer incidence and mortality concentrated in Asia.(18,19)

A study by Ajay Gogia et al from AIIMS, Delhi revealed the TNM (AJCC-7th edition) stage distribution of Breast cancer patients as: Stage I was represented by 4.01%, stage II by 32.70%, stage III by 42.02%, and stage IV by 21.26% patients.(20)

Sundriyal et al in his study revealed that male breast cancer incidence in India was around 1.03% which was similar to western data which show a prevalence of 0.9%. But he also showed that male breast cancer in India occurred at a younger age group(60 years) compared to western population.(21,22) Saxena et al revealed in his study of breast cancer patients in North India that the religious distribution of breast cancer patients included 87%, 7.7% and 5.3% belonging to Hindus, Muslims and Christian communities respectively.(23)

Kakkar et al in his study showed that only 2 patients, or 0.48% of the women under observation, had bilateral breast lesions, whilst 45.95% of the women had left-sided breast tumor's, 225 patients, or 53.57% of the women, had right-sided breast tumor's indicating that right-sided breast cancer is more common in the North Indian population.(24)

Infiltrating ductal carcinoma (96%) was the most common histologic subtype seen in Indian studies(20)

Risk Factors:

As per Makhoul et al(25), risk factors for breast cancer can be divided into 3 categories:

- 1) Due to increased and prolonged oestrogenic stimulation.
- 2) Due to exposure to exogenous carcinogens such as tobacco, alcohol and others.
- Genetic mutations causing decreased ability to repair mutations (BRCA ¹/₂, PTEN, p53, etc)

Age less than 35 is a stand-alone risk factor for more aggressive features such as ER/PR negativity, high grade, node-positivity, Bilateral malignancy, and increased risk of recurrence. With every decrease in age by 1 year in women aged less than 35 years, the risk of death increases by 5%. Meanwhile, this mortality risk was not seen in patients aged 35-50.(26,27)

Women who have 2 or more relatives having breast cancer show a 2.5-fold increase in the risk of breast cancer. A family history of ovarian cancer can also be a predisposition for breast cancer, especially in those with BRCA 1/2 mutations.(28,29)

The occurrence of certain events, including pregnancy, breastfeeding, age of menarche, menopause, as well as their duration and any accompanying hormonal imbalance, are therefore critical in determining the likelihood of inducing carcinogenic processes in the breast microenvironment which is especially susceptible to changes in estrogen status. Pregnancy has been long considered a protective factor against breast cancer. In fact, Anders Husby et al in his study involving a cohort of 2.3 million Danish women demonstrated that this protective effect was restricted mainly to those pregnancies lasting longer than 34 weeks and was not translated to those at 33 weeks or below.(30)

Analysis of the Women's CARE Study, a population-based case-control study of breast cancer patients revealed that while lactation is linked to a lower risk of both receptor-positive and negative tumor's; parity, and age at first birth are solely linked to a lower risk of receptor-positive tumor's. This implies that lactation and parity both portray their protective function through different mechanisms.(31)

Mahavir et al in his study of breast cancer in Northern India discovered that when BMI at the time of diagnosis increased, so did the likelihood of having breast cancer. 46.1% of the study participants had a BMI that was within the normal range (18.5-23) in the current study. In comparison to patients with normal BMI, those with BMIs < 18.5 had a lower risk of acquiring breast cancer. Although other studies showed that the risk of breast cancer with obesity was more pronounced in the post-menopausal patients, his study showed the predilection in both pre and post-menopausal patients.(32)

McCarthy et al studied the relationship of established risk factors with breast cancer subtypes. (33)All four tumor subtypes were linked to higher risks of breast density, with ER/PR+HER2 and TNBC showing a larger correlation among premenopausal women. However, there were different sets of risk factors for TNBC (age, race, BMI, and density), ER/PR+HER2+ (prior biopsy, atypical hyperplasia, BMI, and density), ER/PR-HER2+ (family history and density), and ER/PR+HER2- (age, race, prior biopsy, atypical hyperplasia, age at first birth, age at menarche, family history, BMI, and density). Additionally, they discovered that TNBCs were more likely than other subtypes to be diagnosed as interval malignancies and had a lower screen detection rate.

Anothaisintawee et al in his meta-analysis showed that Breast cancer risk is markedly increased by Oral Contraceptive use, Hormone Replacement Treatment, and Diabetes Mellitus. When compared to women who weren't exposed to these factors, the risk associated with exposure to them was 10% to 23% higher. On the other hand, breastfeeding may reduce the incidence of breast cancer by about 10%. The results of subgroup analyses based on Caucasian and Asian studies showed that the effects of DM and breastfeeding on breast cancer risk were comparable to general pooling in both Caucasians and Asians, however the impacts of OC in the 2 subgroups produced nonsignificant effects. Additionally, HRT's effects were only seen in Caucasians and not in Asians.(34)

Prognostic factors:

Age:Dinshaw et al in his study from Tata Memorial Hospital demonstrated that Although age >40 was associated with a trend towards improved survival, it was not statistically significant. Age under 40 years old was only linked to an increase in local recurrence. (35)

Clinicopathologic findings supported earlier studies showing that younger women had breast tumor's that were larger (P = .012), more severe (P = .0001), more lymph node-positive (P

=.008), less ER-positive (P =.027), more frequently overexpressed Her2/neu (P =.075), and tended to have worse disease-free survival.(36)

Other international studies have also shown that In addition, across all histological subtypes and stages, breast cancer survival rates are much lower for women under 40 than for older women. The debate, however, centers on whether age in and of itself is a risk factor for a poorer prognosis. This theory has been debunked by a number of studies, which instead suggest that the influence of early age on outcome is only a reflection of the overrepresentation of other known prognostic pathological variables.(37,38)

Religion

Although there were significant differences in the stages of the disease at diagnosis between Hindu, Muslim, Christian, and Parsi communities, Badwe et al study's of the clinical and pathological characteristics, patterns of relapse, and prognosis of breast cancer in these groups of people found no differences in the overall 5-year survival. Even after matching for illness stage and menopausal state, this held true.(39)

Menstrual status and BMI

Klienfeld et al in his study suggest that breast cancer in menstruation women has a worse prognosis and is more likely to be malignant, especially in younger age groups.(40)

In their meta-analysis, Zahra et al. showed that the incidence of breast cancer during the premenopausal period is not significantly influenced by body mass index. On the other hand, in the postmenopausal population, being overweight or obese may have a minor but considerable impact on breast cancer.(41)

In order to incorporate the association between BMI as an indicator of obesity and prognosis in breast cancer, a meta-analysis was conducted by Ryu et al. The results of this study revealed that high BMI had a negative impact on the prognosis in breast cancer with statistical significance.(42)

Laterality of Breast cancer

Amer et al demonstrated in his trial that there were no significant relationship between Laterality and survival but a SEER analysis showed that site of primary had a impact on survival favouring right over left and upper and lower inner quadrants showing better prognosis.(43,44)

Pre-surgical staging of breast cancer

Sathwara et al showed in his review of breast cancer survival studies in India that presurgical staging was an independent risk factor for survival.(45)This is also demonstrated in a study by Sant et al in the EUROCARE group study(46) in which Overall, the five-year relative survival rate was 79%; however, it ranged from 98% for early, node-negative (T1N0M0) tumours to 87% for big, node-negative (T2-3N0M0) tumours to 76% for node-positive (T1-3N+M0) tumours to 55% for locally progressed (T4NxM0) tumours to 18% for metastatic (M1) tumours.

Role of Neoadjuvant chemotherapy

A meta analysis by Chen et al showed that NACT had no role in survival outcomes but presence of pathological complete response corresponded with better survival when compared to Adjuvant chemotherapy resulting in increase in the rate of BCS.(47) This was similarily seen in an Indian systematic review and meta analysis by Mona Pathak et al which showed NACT has no major impact on breast cancer survival. However, it is associated with increased BCS rates. NACT downgrades tumour size facilitating more BCSs without increasing LRR. The evidences were graded for all outcomes as high except DFS and BCS as moderate.(48) However another meta analysis on TNBC patients showed that in terms of enhancing OS and DFS, NACT with a pathological complete response outperforms AC-T. However, when patients have residual illness, the results are the opposite.(49)

Nodal Dissection

Nair et al in her study demonstrated that nodal positivity significantly correlated with the Disease free survival in both Early breast cancer and LABC.(50) Risk of death was still significantly lower for cases with 10 or more lymph nodes removed compared to no nodes removed. Risk of death increased significantly with increased number of positive nodes and increased ratio of positive to total nodes removed.(51)

Histopathological findings

James R Bundred et al in his studies, showed that Following breast conserving surgery for early-stage, invasive breast cancer, involved or close pathological margins are linked to greater local and distant recurrence. Obtaining a minimum clean margin of at least 1 mm should be the goal for surgeons. Tumor on ink margins and close margins were linked to higher rates of local and distant recurrence when compared to negative margins. Compared to wider (tumour >2 mm) margins, positive or narrow margins (tumour on ink or <2 mm) were linked to higher mortality rates.(52)

Zhang et al also showed in his meta-analysis indicating favourable prognosis for the mucinous, tubular, and papillary subtypes of breast cancer. HR+/LN- patients with Mucinous Carcinoma, Tubular Carcinoma, Papillary Carcinoma, Adenoid Cystic and Cririform Carcinoma likely derive no benefit from adjuvant chemotherapy.(53)

Emre et al in his trial showed that LVI(lympho-vascular invasion) and perineural invasion (PNI) are poor predictors of long-term survival in individuals with late recurrence. On the early and late recurrences, molecular subtypes and LVI were successful. However, only the early recurrence was linked to lymph node positivity and grade. LVI and PNI were the prognostic variables for DFS after 5 years.(54)Other studies have also shown the negative prognostic effect of PNI,LVSI on Locoregional recurrence rates.(55)

Nehmat et al demonstrated in her meta analysis that the triple negative and HER2+/HRsubtypes had the highest likelihood of reaching pCR, and there was evidence that adding HER2-directed therapy with NAC had a significant impact on achieving pCR in the latter subtype. Choudhary et al demonstrated that all other tumour groups had noticeably better probabilities of reaching pCR following neoadjuvant chemotherapy compared to hormone receptor-positive tumours with HER2-negative status. Better DFS and OS results were linked to hormone receptor status and achieving a pCR after neoadjuvant chemotherapy, especially in patients with HER2-positive and TNBC malignancies.(56,57)

Bloom et al in his landmark trial demonstrated the significant differences in overall survival between grades as 75%,47%, 32 % for Grade 1,2 and 3 respectively.(58)

Saber et al in his study of 29833 patients showed that the most often diagnosed subtype (59.0%) was luminal A, which also had the highest survival rates. Triple-negative had the lowest survival rates. Age and stage at diagnosis had a dose-response effect on the risk of

death for all subtypes, with the HER2-enriched subtype showing the strongest association. Severe comorbidity (Charlson Comorbidity Index score 3) also raised the risk for all molecular subtypes.(59) However, pathological node involvement and triple negativity (HR 1.9, 95% CI 1.36-2.90, p = 0.001) were linked with poor OS. Clinical stage (stage III), triple negativity, and HER2 neu positivity were associated with worse RFS.(20) Compared to populations in the West, India has a significantly greater prevalence of TNBC. Up to one in three breast cancer patients may have triple-negative illness. In India, patients with breast cancer may experience poor outcomes as a result of this finding.(60)

Aness et al demonstrated that although not statistically significant, the prevalence of DCIS was linked to a tendency toward increased 5-year disease-free survival and overall survival. Additionally, DCIS was linked to younger patient ages, smaller tumour sizes, fewer palpable tumours, more high-grade tumours, and invasive ductal histology. However, DCIS was not a independent indicator of increased disease-free or overall survival.(61)

Determinants of survival in metastatic disease

Chen et al in a SEER population-based analysis showed that elderly individuals in stage IV patients were less likely to just have distant lymphatic dissemination and more likely to have lung metastasis. bone continued to be the most frequent site of breast cancer metastasis (65.1%), followed by the lung (31.4%), liver (26.0%), and brain (8.8%) metastasis. Compared to older patients (28.3%), a higher percentage of younger (34.9%) and middle-aged (36.2%) patients had numerous metastatic locations. Elderly patients had the worst prognosis in terms of both overall survival and survival from breast cancer specifically, whereas younger patients had the greatest prognosis. Furthermore, compared to other metastatic patients, patients with bone metastases only had better survival. The groups with only brain metastases and numerous sites of metastasis had the worst prognoses.(62)

The total median survival period following metastasis was one month for liver metastasis, three months for brain metastases, and 12 months for bone and lung lesions. Patients with numerous metastatic locations had a median survival of 7.5 months. There was no connection between survival after metastasis and time before relapse.(63)

Management of Breast Cancer:

Neoadjuvant chemotherapy in breast cancer

Nearly 41.7% of all breast cancer patients in India receive neoadjuvant chemotherapy(20). Chemotherapy administered before or after surgery had no different effects on disease-free (DFS) and overall survival, according to large clinical trials like EORTC 10902 and NSABP B-18. Other advantages (such as converting mastectomy patients to breast-conserving surgery [BCS]) and some potential drawbacks have been researched and are widely acknowledged. The most popular neoadjuvant chemotherapy (NAC) regimen for all early breast cancer subtypes, anthracycline plus taxanes-based chemotherapy, is linked to high rates of clinical response (up to 90% in NSABP B-27). Trastuzumab with or without Pertuzumab should be given concurrently with a taxanes to patients with breast cancer that has tested positive for the human epidermal growth factor receptor 2 (HER2) gene. In the GeparSixto and CALGB 40603 investigations, the inclusion of carboplatin resulted in a higher pathological complete response (pCR) rate for patients with triple negative breast cancer (TNBC), despite increased toxicity and without a significant increase in BCS rate.(64)

Surgery in breast cancer-Significant changes have been made to breast surgery over time. First, up until the 1960s, Halsted's radical mastectomy was widely accepted as the norm of care. Patey developed the modified radical mastectomy (MRM), which removes the breast, pectoralis major fascia, and level I and II axillary lymph nodes, in order to lower morbidity. In contrast to less invasive procedures, patients treated with Halsted radical mastectomy did not significantly outlive their counterparts, according to the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-04 trial. Additionally, it was discovered that standard axillary lymph node dissection (ALND) is excessively aggressive in node-negative disease. As a result, this trial signalled the shift toward a more conservative surgical approach to treating breast cancer. When combined with radiation therapy, BCS was first proven to be a viable therapeutic option for early invasive breast cancer in the NSABP B-06 trial. When compared to patients who underwent modified radical mastectomy, participants receiving BCS with or without radiation showed no appreciable change in overall survival (OS) or disease-free survival (DFS). In patients who received lumpectomy without radiation, the rate of local regional recurrence (LRR) was considerably greater. BCS was further established by the Milan Cancer Institute (Milan I Study) as the accepted standard of therapy for early breast cancer (less than 2 cm in diameter). The adoption of treatments like nipple/skin sparing

mastectomy in patients who have tumours with fewer favourable characteristics than those in the studies in which these approaches were initially evaluated is also plausible given the popularity of newer, less invasive mastectomy techniques.

In the past ten years, axilla management has transformed. The quality of life is significantly impacted by ALND's severe morbidity, which includes lymphedema, restricted shoulder movement, and arm sensory problems. The NSABP B32 experiment proved that ALND has no survival benefit in people with a negative SLNB. Nodal involvement is categorised as solitary tumour cells, macro-metastatic (>2mm), or micro-metastatic (2mm) (ITC). In patients with ITC or micro-metastatic disease on SLNB, many surgeons no longer perform ALND as a result of the findings of the IBCSG 23-01 and AATRM 048 studies.

For many surgeons, the ACOSOG Z0011 was a game-changer. Following breast conserving surgery (BCS), SLNB, and adjuvant whole-breast irradiation, patients with T1 to T2 cancers and fewer than 2 positive SLNs were randomly assigned to receive ALND versus no ALND. In comparison to individuals who received ALND, the SLNB group had better 5-year OS and DFS. The ALND group also had a higher 10-year LRR, however it was not statistically significant.(65)

Bloom proposed the current best known grading scheme in 1950. His initial classification was based on three key characteristics: the degree of tubule development, nuclear characteristics, and mitotic activity. Low grade and high grade tumours were his two categories for categorising breast carcinomas. This classification was improved By Bloom and Richardson's modification in 1957. He included a score of 1 to 3 to each criterion according to mild, moderate, or marked degrees without altering the elements of classification. Scores ranged from 3 to 9 overall. Elston changed this classification further by limiting its use to invasive ductal carcinoma and omitting particular varieties such mucinous, medullary carcinoma. By measuring the mitotic activity, Elston and Ellis changed the Bloom and Richardson grading system. This is also known as the Bloom and Richardson system as modified by Nottingham.(66)

<u>Post surgical response assessment</u>-There are several techniques for assessing the effectiveness of chemotherapy on tumours, including:Residual Cancer Burden, Miller-Payne, Pinder, Sinn, and Sataloff .Miller Payne grading: Following chemotherapy, the residual tumour was removed (mastectomy or wide local excision with axillary surgery). Using a five-

point histological grading system with a reduction in tumour cellularity as the key characteristic, the excised tissue was evaluated and the response to chemotherapy scored in comparison to a pre-treatment core biopsy. In patients with big and locally advanced breast tumours receiving such therapy, this grading system, which evaluates the histological response to initial chemotherapy, can predict overall survival and the disease-free interval.(67)

Need for Adjuvant chemotherapy in Hormone positive, Her 2 negative tumours-

Recurrence risks vary according to breast cancer subtypes and stages. Hormone-positive Early-stage HER2-negative breast cancer is associated with a 10%–15% chance of distant recurrence over 10 years and only a 2%–3% absolute benefit from chemotherapy, which is roughly equivalent to the risk of toxicities that are fatal, life-threatening, or permanently altering. Predicting the likelihood that the disease will recur is the best strategy to avoid overtreating patients with breast cancer. If this is successfully accomplished, only those patients who have a higher chance of experiencing such recurrences will receive adjuvant chemotherapy, preventing the overtreatment of those who may not require it. IHC4, luminal A/B subtyping, and PREDICT are currently some of the risk assessment methods that are often employed in India.(3)

Hormonal therapy-The basis for hormone treatment, which effectively deprives tumour cells of hormones, is that breast cancer tumour cells still have the ability to thrive when exposed to female sex hormones; removing these hormones inhibits the proliferation of cancer cells. The benefits of hormonal therapy are at least a 47% risk reduction for recurrence and a 26% reduction in mortality. This benefit alone outweighs the combined gains from all other adjuvant therapies.(68) Premenopausal women since decades have been shown to benefit from Tamoxifen while Aromatase inhibitors are rapidly usurping its position in post menopausal women. The 12-year DFS with 4.6% absolute improvement and DRFI with 1.8% absolute improvement, but not OS 90.1% versus 89.1%, continued to be significantly improved for patients assigned to exemestane plus ovarian function suppression over tamoxifen plus ovarian function suppression, according to a recent update on the SOFT/TEXT trials.

Benefit in OS was clinically significant in patients with high-risk illness, such as women under the age of 35 (4.0%), patients with tumours larger than 2 cm (4.5%), or patients with

grade 3 (5.5%) tumours. Patients who had a low risk of recurrence did not appear to benefit from OS. (69)

Fangmeng Fu et al also showed in his analysis of 144103 US patients that Delays in the initiation of AHT more than 150 days were associated with decreased survival compared to patients who initiated therapy before 150 days in hormone receptor-positive/human epidermal growth factor receptor-2-negative disease.(70)

Sequencing of adjuvant RT and chemotherapy-The timing and sequencing of adjuvant radiation and chemotherapy has ever been a question of concern. Huang et al 's analysis of 10 retrospective trials revealed that the 5-year LRR increased from 5.8% in individuals treated within 8 weeks to 9.1% in patients treated between 9 and 16 weeks after surgery.(71)

But later, CALGB in an RCT comparing adriamycin and cytoxan to adriamycin and cytoxan, then taxane found that Radiation was postponed for patients in the adriamycin plus taxane group by an additional 84 days (4 cycles). Locoregional relapses were lower in the AC-T arm compared to the AC arm (9.7% vs. 3.7%; P =.04) despite the extra delay, even though In this RCT, the majority of the patients had negative margins. This and other studies by MD Anderson all points to that fact that , assuming all modalities are administered without undue delays, the administration of chemotherapy prior to radiation therapy does not result in abnormal rates of local relapse for the majority of patients receiving breast-conserving surgery with negative margins. It is still unclear if individuals with positive/close margins or other local recurrence risk factors will benefit from receiving radiation treatment earlier.(72,73)

Radiotherapy advances:

Conventionally breast cancer has been treated with the standard dose fractionation regimens with 50Gy in fractions of 2 Gy. Early in the 1990s, it was discovered that breast cancers and late-reacting normal tissues were both equally sensitive to fraction size, indicating that prolonged treatment time does not preferentially spare normal tissues. These findings paved the way for hypofractionated whole breast irradiation (HF- WBI), which is administered to the entire breast (with fraction sizes greater than 2 Gy), a total dose that is radio-biologically equal to a CF-WBI regimen, with or without an extra tumour bed boost. Some of the major RCTs paving the way towards Hypofractionated RT are being discussed here.

Benefit of Radiotherapy:

The Early Breast Cancer Trialists' Collaborative Group (EBCTCG) trial revealed that overall, radiation decreased the risk of breast cancer death from 25.2% to 21.4% and the 10-year chance of any (i.e., locoregional or distant) first recurrence from 35.0% to 19% (absolute reduction 15.7%). There was a drop in the local recurrence rate of 21.2% in pN+ illness, which highlights this more clearly.(74)

Benefit of Boost:

In their experiment, Bartelink et al. found that adding a boost of 16Gy in 8# to EBRT after BCS caused 5 year local recurrence rates to be 7.3 percent and 4.3 percent, respectively, favouring the inclusion of boost. This difference was bigger in women under the age of 40. (19.5 percent with standard treatment and 10.2 per-cent with additional radiation)(75)

Hypofractionated RT vs Conventional RT in Early Breast cancer post BCS

In 1986, Royal Marsden Hospital and Gloucestershire Oncology Centre (RMH/GOC) in the United Kingdom began the first significant randomised experiment. Two HF-WBI arms (42.9 Gy in 13 fractions or 39 Gy in 13 fractions, each provided every other day) and one CF-WBI arm (50 Gy in 25 fractions) were each randomly assigned to one of 1,410 patients. Regarding local recurrences, none of the HF-WBI arms significantly varied from the CF-WBI control arm. Clinical assessments of breast cosmesis, shrinkage, distortion, oedema, induration, telangiectasias, and shoulder stiffness at 10 years revealed substantial differences, with the 39 Gy arm typically doing better and the 42.9 Gy arm performing worse.(76)

A randomized HF-WBI versus CF-WBI experiment was started in Canada by the Ontario Clinical Oncology Group (OCOG). CF-WBI (50 Gy in 25 fractions administered over five weeks) or HF-WBI (42.56 Gy in 16 fractions delivered over 3.2 weeks) were the two treatment options offered to patients at random. Local relapse, overall survival, skin toxicity, and cosmetic results at 10 years were comparable and statistically insignificant.(77)

The follow-up UK Standardization of Breast Radiotherapy Trial A (START A) was started in 1999 with a similar design to the RMC/GOC trial, with the exception that the 42.9 Gy arm was reduced to 41.6 Gy arms due to the marginally higher rate of late normal tissue effects in the 42.9 Gy arm in the RMC/GOC trial. Local relapse, distant relapse, and overall survival at

10 years were not significantly different across the arms, while the 39Gy arm had better cosmetic results.(78)

As a more practical trial with a shorter treatment period for the HF-WBI arm, the START B trial was launched concurrently with START A. Patients were randomly assigned to either HF-WBI or CF-WBI (50 Gy in 25 fractions over five weeks) (40 Gy in 15 fractions delivered over three weeks). In accordance with departmental policy, a non-randomized elective boost of 10 Gy was administered in 5 portions. Breast shrinkage, telangiectasias, and oedema were considerably reduced in the 40 Gy arm compared to the 50 Gy arm, however there were no significant differences in breast induration, shoulder stiffness, or arm oedema. 10 year local relapse rates were not statistically different between the arms.(79)

Similarily FAST trial which compared CF-WBI (50 Gy in 25 fractions) or one of two HF-WBI arms (30 Gy or 28.5 Gy in five once-weekly fractions of 6 Gy or 5.7 Gy, respectively is currently under purview with its survival outcomes awaited. At a median follow-up of three years, 28.5 Gy in five fractions had unfavourable effects in the breast that were significantly less severe than those from 30 Gy in five fractions and comparable to those from 50 Gy in twenty-five fractions.(80) The Trans-Tasman Radiation Oncology Group (TROG) started TROG 07.01, the first randomised trial comparing CF-WBI (50 Gy in 25 fractions) with HF-WBI (42.5 Gy in 16 fractions) with or without a tumour bed boost to evaluate hypofractionation for patients with ductal carcinoma in-situ (DCIS) whose results are awaited.(81)

There was no discernible difference between HF-WBI and CF-WBI in terms of local recurrence-free survival, relapse-free survival, breast cancer-specific survival, or overall survival, according to a Cochrane analysis published in 2016. Patient-reported metrics showed that recipients of HF-WBI experienced much less acute discomfort, pain, burning/stinging, oedema, and exhaustion than those who received CF-WBI. With the exception of the 42.9 Gy arm in the RMH/GOC study, which was withdrawn for the follow-up START A trial, late breast, skin, and subcutaneous tissue toxicity either favoured HF-WBI or was comparable between HF-WBI and CF-WBI in all four large randomised trials. The START A and B trials' long-term analyses revealed very low rates of radiation pneumonitis, symptomatic rib fractures, and ischemic heart disease, with no differences between the HF-WBI and CF-WBI arms. The breast cosmesis outcomes also favoured HF WBI or were

similar. They also showed that results demonstrate that a boost is safe to use with HF-WBI and should be considered as part of treatment with the same criteria as those for CF-WBI.(82)

Hypo-fractionated RT in LABC

A recent randomised trial conducted by researchers from the Chinese Academy of Medical Sciences compared hypofractionated PMRT (43.5 Gy in 15 fractions) with conventionally-fractionated PMRT (50 Gy in 25 fractions) with RNI and no scar enhancement. Five-year locoregional recurrence, disease-free survival, or overall survival did not differ significantly from one another. While incidence of grade three acute skin toxicity was reduced in the hypofractionated group, incidence of radiation pneumonitis, lymphedema, shoulder dysfunction, and ischemic heart disease were equal between groups.(83)

Hypofractionated PMRT (42.56 Gy in 16 fractions) and conventionally-fractionated PMRT (50 Gy in 25 fractions) are being contrasted in a recently launched randomised phase III experiment (Alliance A221505). The outcomes are awaited. With the exception of the few individuals participating in START studies, follow-up is still insufficient for the bulk of these patients. Longer follow-up from these and other ongoing clinical trials will be necessary before hypofractionation with RNI is widely adopted in the locally advanced or post-mastectomy scenario.

Radiotherapy technique-Saroj Kumar et al in his Dosimetric Study Comparing 3D-CRT vs. IMRT vs. VMAT in Left-Sided Breast Cancer Patients found that there was increased low volume irradiation of the heart, lungs, and body with VMAT performing only marginally better than IMRT in coverage and decreasing lung irradiation with comparable heart irradiation, while both inverse planning modalities led to increased coverage, better Conformity Index, and better Homogenity Index and decreased high dose volumes in OARs compared to 3DCRT.(84)

Effect of lumpectomy boost-

A EORTC trial by Bartelink et al showed that Local recurrence rates over five years were 7.3 percent and 4.3 percent, respectively for patients who received RT without and with boost in Early breast cancer post BCS. The greatest benefit was seen in patients under the age of 40; at five years, their rate of local recurrence was 19.5% with conventional treatment and 10.2%

with extra boost radiation. No differences in metastasis or overall survival rates were observed at five years in the age range of 41 to 50.(75)

Another study by the Danish Breast Cancer Group revealed a 10 year cumulative incidence of breast cancer recurrence rates as 16.6%. Estrogen receptor-positive tumours, lymph node-positive disease, and tumours larger than 20 mm were linked to higher cumulative occurrences and hazards for late BCR.(85)

Dose to cardiac sustructures as a measure of Cardiotoxicity

Wennstig et al in her trial showed that Radiation doses to the LAD in women receiving conventional 3DCRT for BC between 1992 and 2012 remained high and were linked to a higher need for coronary intervention in the middle of the LAD. The findings suggest that while planning an RT treatment, the LAD radiation dose should be taken into account and kept as low as possible. Lessening the exposure to the LAD is anticipated to reduce the chance of radiation-induced stenosis in the future.(86)

Furthermore, Sophie Jacob et al in the BACCARAT study demonstrated that Mean Heart Dose is insufficient to accurately forecast each patient's exposure to the Left Ventricle and coronary arteries, particularly the Left Anterior Descending artery. It would be required to take into account the distribution of doses within these cardiac substructures rather than only the MHD for accurate radiotherapy-induced cardiotoxicity studies.(87)

Piroth et al in his DEGRO study demonstrated than the dose constraints to the Mean Heart dose and Mean LAD dose were 2.5Gy and 10Gy respectively(88)

Predictors of subclinical cardiac disease

Left ventricular ejection fraction and Myocardial performance index-

CTRCD was described by 2020 ESMO consensus recommendations as an absolute LVEF decline of >20 percentage points, an absolute LVEF decline of 10 percentage points to a value of 50%, or an absolute LVEF decline to a value of 50%. 2020 ESMO consensus recommendations defined Subclinical cardiac dysfunction as an absolute decrease from baseline in the GLS of \geq 5% or a relative decrease from baseline in the GLS of \geq 12% or Troponins elevation from baseline.(89,90)

Depending on the series, the incidence of trastuzumab-induced cardiotoxicity is thought to range from 1.7% when taken alone to over 20% when combined with additional chemotherapeutic medications like anthracyclines or cyclophosphamide. There are now two categories of cardiotoxicity brought on by the use of chemotherapy. The direct oxidative stress-induced death of cardiomyocytes as a result of Top2B inhibition is thought to be the cause of Type I, which is distinctive of anthracyclines. At a myocardial biopsy, it is an irreversible, dose-dependent, and clearly visible process. Type II, on the other hand, is known as trastuzumab-induced cardiotoxicity and is characterised by a temporary decline in myocardial function without causing cell death. It doesn't depend on dose and is typically reversible. (91)

These mechanisms' effects are assumed to be comparable to those of other heart diseases, in which the onset of systolic dysfunction is preceded by diastolic dysfunction. Additionally, it has been demonstrated that anthracycline use lengthens the period of isovolumetric contraction, which contributes to diastolic dysfunction. This may help to explain why, in certain studies, an increase in Tei index(Myocardial performance Index) (0.41+/- 0.08) was not accompanied by a similar decline in LVEF, but instead was linked to a three-fold increase in the risk of cardiomyopathy, whereas no such association was seen for LVEF. Tei index may be useful in identifying cardiotoxicity, however the evidence is not strong enough to support its widespread usage.(92)

NT-ProBNP and T wave Peak to end time

Isabel et al in her study showed that 239.5 pg/ml was determined to be the ideal NT-proBNP cut-off level, with maximum attainable values of 79% sensitivity and 87% specificity to detect cardiotoxicity in patients of Breast cancer treated with Transtuzumab +/- Anthracycline based chemotherapy and that NT-proBNP and Diabetes may be associated with trastuzumab-induced cardiotoxicity.Another study by Urun et al tested significant for relation bbetween Heart failure and NT ProBNP >300pg/ml(91,93)

Iqbal et al's analysis showed a positive correlation between hs-troponin I and TpTe interval in predicting cardiac events after anthracycline based chemotherapy.(94)

Survival Outcomes

Overall survival, Disease free survival and Progression free survival varies with the population and study treatment design. Valentina et al in her study showed that On follow up, 8.9% patients had passed away, while 91.1% were still alive. The overall median DFS was 137 months, while the overall median OS was 166 months.(95). Whereas an Indian trial from AIIMS Delhi showed that the median time to relapse in the non-metastatic group was 36 months, the 3-year relapse free survival rate was 73.5%, and the overall survival rate was 82.1%. While pathological node involvement and triple negativity were linked to poor OS, clinical stage (stage III), triple negativity, and HER2 neu positive were linked to worse RFS. The median time to progression for the metastatic group was 18 months, and the 3-year progression-free survival (PFS) rate was 35% while the overall survival rate (OS) was 20%.(20)

MATERIALS AND METHODS

MATERIALS AND METHODS

<u>Study Setting</u>: Study was conducted in the Department of Radiation Oncology, AIIMS Jodhpur

<u>Study design</u>: Single arm retrospective study

Study participants: All patients of biopsy proven breast cancers had received post-operative radiation therapy in the Department of Radiation Oncology, AIIMS Jodhpur from the year 2018 to 2020.

Study Period: 2 years

<u>Eligibility Criteria</u>

Inclusion criteria:

1. All biopsy proven patients of breast cancer, treated with post operative radiation therapy in AIIMS, Jodhpur

Exclusion Criteria:

1. Patients treated with palliative intent.

2. Patients with incomplete/wrong contact details.

Sample size-

All patients of biopsy proven breast cancer who received post operative radiation therapy in the Department of Radiation Oncology AIIMS Jodhpur from the year 2018 to 2020. The records have been accessed from the registration records of CPMS and records in the Department of Radiation Oncology, Surgical Oncology, Pathology and Cardiology.

Study Procedure-

Radiation treatment Procedure: CT Simulation and treatment was done in the supine position with breast board and contouring done on the basis of non-contrast CT. Patients have been treated with Elekta VERSA HD machine with 6MV photon beam. Initially patients were treated with 50Gy/ 25# and later shifted to 42.56Gy/16# with either 3DCRT or VMAT.

Creation of Database:

A database was created using softwares as spreadsheets. The study database was used for entry of data obtained from various sources such as the Computerised Patient Management System (CPMS) of the Institute and records of the Department of Radiation Oncology and Pathology.

Entry of Data:

Data was captured as per the study form attached with the Database. Data was collected using:

- 1. Manual search and entry from CPMS and Records from Radiation Oncology and Pathology
- Dose distribution data and DVH was obtained from the Monaco Treatment Planning System of Elekta LTD. Additional OARs were contoured like coronary arteries, Left Anterior Descending artery, Left circumflex artery etc.

All the records of patients of breast cancer who have been treated with a radical intent using post-operative adjuvant radiotherapy in AIIMS, Jodhpur was compiled. After fitting the available records to inclusion and exclusion criteria, screening of all records was made for complete availability of treatment details and contact details.

Various variables was collected related to the patient profile (age, sex, religion, geographic residence, symptoms at presentation, duration of symptoms, addiction history, comorbidities, Anthropometric parameters such as Height, weight, BMI, BSA etc,.), disease status (T stage, N stage, AJCC 8th edition prognostic stage group, histology, gross tumor, and nodal volume, level of nodal involvement, presence of LVSI, PNI, extra-nodal extension, DCIS/LCIS or nodes etc,.), and treatment factors (receipt of surgery, adequacy of surgery, nodal dissection, technique of radiotherapy, doses received, receipt of chemotherapy and agent used, cumulative dose of chemotherapy, significant gaps in radiation treatment etc,.).

The response to treatment was based on either Clinical Examination (CR, PR, SD, PD) based on WHO criteria or if the imaging of the patients after at least 3 months of completion of definitive treatment is available, same will be considered while assessing the response to treatment. The response assessment was done according to the RECIST criteria. The present status of the patient will be enquired from the contact details available through whichever means feasible. Telemedicine was used wherever necessary to examine the patient if the patient is unable to visit the hospital. If the disease relapses or progresses after treatment, the date of biopsy if available or imaging if a biopsy is not available was regarded as the date of progression. In patients who relapse/progress, the type of relapse, time to relapse/progression and the treatment offered will also be recorded. If the patient was not contactable, the last documented visit in eHIS was taken as the last follow-up and was censored in the further time points.

Based on this data, various outcome variables was studied like overall survival(OS), disease-free survival(DFS), progression-free survival(PFS)/Recurrence free survival(RFS).

1. **Overall survival**- Defined as the time from diagnosis to death from any cause.

2.Disease free survival- The period after successful treatment during which there are no signs and symptoms of the disease that was treated.

3.Progression free survival/Recurrence free survival(RFS)-The period during and after the treatment of the disease for which the patient lives with the disease but doesn't progress.

Response Evaluation-

Response evaluation was done on the basis of Recurrence/Progression vs Disease Control. Wherever response assessment scans are available, iRECIST Criteria 1.1. was used.

Statistical Analysis-

All the qualitative data was expressed as frequencies and quantitative data was expressed as maximum, minimum, mean, median with range. Survival outcomes of OS, DFS, PFS/RFS was depicted using Kaplan Meier Curve and statistically significant correlation was tested with Log Rank test. Cox regression analysis was used for fitting parametric continuous data variables and illustrated with Hazard Ratio. Pearson's correlation test and Spearmann's correlation test was used for testing for correlation between parametric and non-parametric variables respectively. Shapiro Wilk's test was used for assessing for normality. A p-value of less than equal to 0.05 was taken as statistically significant. Analysis was done using Microsoft Excel and IBM SPSS.

Figures:

RESULTS

RESULTS

The data of 111 patients were retrieved retrospectively.

1. <u>AGE:</u>

Age groups	Frequency
20-29	1
30-39	10
40-49	37
50-59	32
60-69	21
70-79	9
80-90	1

The mean ,median and mode of ages were found to be 52.72973, 52 and 42 respectively with a maximum age of 83 and minimum age of 29.

AGE

Ν		111
Mean		52.73
Median		52.00
Mode		42
Std. Deviation		11.534
Variance		133.035
Percentiles	25	43.00
	50	52.00
	75	63.00

2. <u>GENDER:</u>

GENDER	FREQUENCY
Female	109
Male	1
Grand Total	110

Out of the 111 patients whose data were collected; 1(0.9%) was male and 110(99.1%) were female.

3. GEOGRAPHIC DISTRIBUTION

Majority of patients were from Jodhpur(69%) followed by Jalore(6%), Nagaur(5%), Pali(5%) ,Barmer(5%), Jaisalmer(3%), Sirohi (2%), Osian, Aligarh, Ajmer, Jhunjhunu, Karauli(1% each).

GEOGRAPHICAL REGIONS	FREQUENCY
Ajmer	1
Aligarh	1
Barmer	6
Jaisalmer	3
Jalore	7
Jhunjhunu	1
Jodhpur	77
Karauli	1
Nagaur	6
Osian	1
Pali	5
Sirohi	2

4. <u>RELIGION:</u>

RELIGION	FREQUENCY	PERCENTAGE
Hindu	108	97.3
Muslim	3	2.7
Grand total	111	100

There were 108(97.3%) Hindus and 3(2.7%) Muslims.

5. <u>HEIGHT</u>

Ν	111
Mean	1.5528
Median	1.5600
Mode	1.56
Std. Deviation	.06082
Variance	.004
Range	.31
Minimum	1.39
Maximum	1.70

The heights of the patients ranged from a minimum of 1.39 m to a maximum of 1.7 m with a mean of 1.55 m and a median of 1.56m.

6. <u>WEIGHT</u>

Ν	111
Mean	65.320
Median	64.500
Mode	68.0
Std. Deviation	14.1154
Variance	199.245
Range	71.1
Minimum	39.0
Maximum	110.1

The weights of the patients ranged from 39kg to 110.1 kg with a mean of 65.32 kg and a median of 64.5 kg.

7. BODY SURFACE AREA

Ν	111
Mean	1.66985327168
Median	1.6800000000
Mode	1.814563002
Std. Deviation	.192996862060
Variance	.037
Range	.931076107
Minimum	1.287913903
Maximum	2.218990010

Among the 111 patients studied, the Body Surface area(BSA) ranged from a minimum of 1.27 to a maximum of 2.218 with a mean and median of 1.669 and 1.68 respectively.

8. BODY MASS INDEX

Ν	111
Mean	27.0563077812
Median	26.8734239200
Mode	30.63004584
Std. Deviation	5.49840063645
Variance	30.232
Range	30.57343089
Minimum	15.04571583
Maximum	45.61914672

9. BMI BASED STRATIFICATION

BMI BASED STRATIFICATION	PERCENTAGE	FREQUENCY
	25.45%	20
NORMAL WEIGHT	25.45%	28
OBESE	61.82%	68
OVERWEIGHT	12.73%	14
Grand Total	100.00%	110

61.8% Patients were Obese, 12.73% were overweight with WHO Asian cut off of >25 kg/m² for Obesity and 23-24.9 kg/m² for Overweight.
10. LATERALITY OF DISEASE(SIDE INVOLVED)

LATERALITY	COUNT OF LATERALITY
LEFT	55
RIGHT	56
Grand Total	111

11. <u>RECURRENT VS NEW CASES</u>

RECURRENCE?	FREQUENCY
NO	108
YES	3
Grand Total	111

12. CLINICAL PRESENTATION

a) **PRIMARY COMPLAINT**

PRESENTING COMPLAINT	PERCENTAGE	FREQUENCY
INCIDENTAL	0.90%	1
LUMP	93.69%	104
NIPPLE RETRACTION	0.90%	1
NODULE OVER RIGHT CHEST	0.90%	1
PAIN OVER LEFT ARM	0.90%	1
ULCERATION	2.70%	3
Grand Total	100.00%	111

13. <u>SECONDARY COMPLAINTS</u>

SECONDARY SYMPTOMS	FREOUENCY
BLEEDING FROM NIPPLE	1
DISCHARGE	2
NIPPLE RETRACTION	1
PAIN IN AXILLA	1
SUPRACLAVIAN LYMPH NODE	1
SKIN CHANGES	1
BREAST ULCERATION	1
UPG IN AXILLA	1
Grand Total	9

14. PAINFUL LUMP:

PRESENCE OF PAIN	FREOUENCY
NO	66
YES	18
Grand Total	84

15. <u>PARITY</u>

NO: OF KIDS	FREQUENCY	PERCENTAGE
0	1	2.27%
1	2	4.55%
2	18	40.91%
3	13	29.55%
4	9	20.45%
5	1	2.27%
Grand Total	44	100.00%

16. MENSTRUAL STATUS

MENSTRUAL STATUS	FREQUENCY	PERCENTAGE
Peri-menopausal	10	9.26%
Post-menopausal	62	56.48%
Pre- menopausal	37	34.26%
Grand Total	110	100.00%

17. <u>COMORBIDITIES</u>

COMORBIDITY	FREQUENCY	PERCENTAGE(%)
Bronchial asthma	3	2.38095
Coronary artery disease	1	0.79365
Cholelithiasis	1	0.79365
Diabetes mellitus	16	12.6984
Hepatitis B	1	0.79365
History of hormonal therapy	1	0.79365
Hypertension	23	18.254
Hyperthroidism	1	0.79365
Hypothyroidism	7	5.55556
On immune suppressive therapy	1	0.79365
Spinal cord injury	1	0.79365
None	70	55.5556
TOTAL		100

Out of the 110 patients whose comorbidity history was elicited 2 patients had 3 comorbidities, 18 patients had 2 comorbidities, and the rest had 1 comorbidity. Most common comorbidities were Hypertension(18.2%) and Diabetes mellitus(12.6%).

18. ADDICTION HISTORY

ADDICTION	FREQUENCY	PERCENTAGE
NONE	100	96.14%
SMOKER	1	0.96%
TOBACCO	2	1.94%
SUPARI	1	0.96%
TOTAL		100.00%

19. <u>DID THE PATIENT RECEIVE NEOADJUVANT CHEMOTHERAPY OR</u> <u>NOT?</u>

RECEIVED NACT?	FREQUENCY	PERCENTAGE
NO	64	58.18%
YES	46	41.82%
Grand Total	110	100.00%

Out of the 111 patients enrolled, 110 patients gave responses about whether or not they received NACT. 41.82% received NACT while 58.18% did not.

20. <u>NEOADJUVANT CHEMOTHERAPY REGIMEN</u>

NACT			
REGIMEN	FREQUENCY	PERCENTAGE	
NO NACT	66	59.46%	
AC	5	4.50%	
AC-T	1	0.90%	
AC-TH	3	2.70%	
EC	4	3.60%	
EC-T	3	2.70%	
FEC	3	2.70%	
FEC-T	1	0.90%	
TEC	25	22.52%	
Grand Total	111	100.00%	

Out of the 111 patients, 66 did not receive NACT. Most common regimen received was TEC(22.52%) followed by AC regimen(4.5%).

21. NUMBER OF NACT CYCLES RECEIVED

NUMBER OF CYCLES OF NACT	FREQUENCY	PERCENTAGE
0	66	59.46%
1	1	0.90%
2	1	0.90%
3	10	9.01%
4	12	10.81%
5	1	0.90%
6	14	12.61%
8	5	4.50%
13	1	0.90%
Grand Total	111	100.00%

TEC CYCLES	FREQUENCY	PERCENTAGE
1	1	4%
3	9	36%
4	3	12%
6	12	48%
Grand Total	25	100.00%

Out of the 22 patients who received TEC, 48% patients received complete NACT and 36% received 3 cycles TEC as NACT.

22. <u>TUMOUR LONGEST AXIS DIAMETER ON IMAGING (MAMMOGRAPHY</u> /<u>CT SCAN)</u>

Out of the 111 patients, data of 89 patients were available and that of 22 were missing. Long axis diameters of the tumors ranged from 1cm to 13cm with a mean of 3.58cm

Statistics

TUMOR LAD

Ν		89
	Missing	22
Mean		3.5819
Median		3.0000
Mode		1.80ª
Std. Deviation		2.04927
Variance		4.199
Range		12.00
Minimum		1.00
Maximum		13.00

23. LYMPH NODE SHORT AXIS DIAMETER

Statistics

LN SAD

N	Valid	56
	Missing	55
Mean		1.4548
Median		1.4000
Mode		.80ª
Std. Deviation		.74238
Variance		.551
Range		3.40
Minimum		.30
Maximum		3.70

The Lymph node SAD's were available for 56 out of 111 patients, ranging from 0.3 to 3.7 with a mean and median of 1.45 and 1.4 respectively.

24. <u>TNM STAGING</u>

A. TUMOUR (cT) STAGING

T STAGE	FREQUENCY	PERCENTAGE
1	8	8.79%
2	56	61.54%
3	8	8.79%
4A	4	4.40%
4B	15	16.48%
Grand Total	91	100.00%

TNM staging of 91 out of 111 patients were available with majority of 61.54 % patients having T2 staging followed by 16.8% patients with T4b stage.

N STAGE	PERCENTAGE	FREQUENCY
NO	49.45%	45
N1	42.86%	39
N2	6.59%	6
N3	1.10%	1
Grand Total	100.00%	91

B. NODAL(cN) STAGE

Nodal staging details of 91 patients were collected out of which a majority of 49.45% were N0 stage followed by 42.86% of N1 stage and the least from N3 stage (1.1%).

C. <u>METASTATIC STAGING(M)</u>

M STAGE	FREQUENCY	PERCENTAGE
0	82	90.11%
1	3	3.30%
Х	6	6.59%
Grand Total	91	100.00%

Out of the 91 patients, 90.11% patients were M0, 3.30% were metastatic and the rest were not worked up for metastasis.

D. <u>TNM STAGING</u>

STAGE	FREQUENCY	PERCENTAGE
1A	6	6.59%
2A	29	31.87%
2B	30	32.97%
3A	5	5.49%
3B	17	18.68%
3C	1	1.10%
4	3	3.30%
Grand Total	91	100%

25. <u>TYPE OF SURGERY DONE</u>

SURGERY TYPE	FREQUENCY	PERCENTAGE
BREAST CONSERVATION SURGERY	22	20.00%
LUMPECTOMY	4	3.64%
LUMPECTOMY +SENTINAL LN BIOPSY F/B COMPLETION MASTECTOMY	1	0.91%
MODIFIED RADICAL MASTECTOMY	83	75.45%
Grand Total	110	100.00%

26. <u>NUMBER OF NODES DISSECTED</u>

Statistics

NODES DISSECTED

N	Valid	108
	Missing	4
Mean		18.6481
Median		18.0000
Mode		18.00
Std. Deviation		13.16418
Variance		173.296
Range		103.00
Minimum		.00
Maximum		103.00

27. ADEOUACY OF DISSECTION? (>10 LN DISSECTED-ADEOUATE)

WAS DISSECTION ADEQUATE(>10 LN)?	FREQUENCY	PERCENTAGE
Adequate dissection	92	85.19%
Inadequate dissection	16	14.81%
Grand Total	108	100.00%

Out of the 108 patients, 85.19% patients had underwent adequate dissection while 14.81%

patient had inadequate dissection.

28. <u>NUMBER OF POSITIVE NODES</u>

Statistics

NODES POSITIVE

Ν	Valid	108
	Missing	4
Mean		3.5648
Median		1.0000
Mode		.00
Std. Deviation		8.46573
Variance		71.669
Range		75.00
Minimum		.00
Maximum		75.00

The node positivity data of 108 patients were collected, out of which maximum and minimum node positivity were 75 and 0 respectively with a mean of 3.56 nodes positive.

29. PRE OPERATIVE HISTOLOGY

DDE OD HISTOLOCY	EDEOLIENCY	PERCENTAG
FRE OF HISTOLOGY	FREQUENCI	Ε
ADENOCARCINOMA	1	0.90%
DUCTAL CARCINOMA IN SITU	2	1.80%
INVASIVE BREAST CARCINOMA,NOS	47	42.34%
INVASIVE DUCTAL CARCINOMA	52	46.85%
IDC WITH FOCI OF COLLOID		
CARCINOMA AND MICROPAPILLARY	1	0.90%
CARCINOMA		
INVASIVE LOBULAR CARCINOMA	2	1.80%
NOT AVAILABLE	4	3.60%
POORLY DIFFERENTIATED HIGH	1	0.90%
GRADE CARCINOMA	1	0.7070
SUSPICIOUS FOR MALIGNANCY	1	0.90%
Grand Total	111	100.00%

30. POST OPERATIVE HISTOPATHOLOGY

POST OP HISTOLOGY	FREOUENCY	PERCENTAGE
COLLOID CARCINOMA	1	0.90%
DCIS	3	2.70%
EXTENSIVE DESMOPLASIA	1	0.90%
FOCAL ADENOSIS	1	0.90%
INVASIVE BREAST CARCINOMA	40	36.04%
IBC, DUCTAL AND LOBULAR PATTERN	1	0.90%
IBC, APOCRINE DIFFERENTIATION	1	0.90%
IBC,SEBACEOUS DIFFERENTIATION	1	0.90%
IBC, SIGNET RING DIFFERENTIATION	1	0.90%
INVASIVE DUCTAL CARCINOMA	44	39.64%
INVASIVE LOBULAR CARCINOMA	3	2.70%
INVASIVE PAPILLARY CARCINOMA	1	0.90%
METAPLASTIC CARCINOMA	1	0.90%
MUCINOUS CARCINOMA	1	0.90%
MULTIFOCAL DCIS	1	0.90%
NO VIABLE TUMOUR NOTED.	5	4.50%
NOT AVAILABLE	4	3.60%
SCLEROSING ADENOSIS WITH FEW	1	0.90%
ATYPICAL CELLS.	111	100.000/
Grand 10tal	111	100.00%

31. MODIFIED BLOOM RICHARDSON SCORE

MBR SCORE	FREQUENCY	PERCENTAGE
5	10	16.13%
6	15	24.19%
7	11	17.74%
8	22	35.48%
9	4	6.45%
Grand Total	62	100.00%

Out of the 62 patients with reported Modified Bloom Richardson Scores, the majority had a score of 8(35.48%) followed 24.19% patients with a score of 6. Only 6.45% patients had a score of 9.

32. MODIFIED BLOOM RICHARDSON GRADE

MBR GRADE		
	FREQUENCY	PERCENTAGE
1	4	6.25%
2	35	54.69%
3	25	39.06%
Grand Total	64	100.00%

33. MILLER PAYNE GRADING

MPG	FREQUENCY	PERCENTAGE
1	3	15.79%
2	3	15.79%
3	3	15.79%
4	4	21.05%
5	6	31.58%
Grand Total	19	100.00%

Out of the 19 patients with reported Miller Payne Grading, 31.58% had grade 5 followed by 21.05% had grade 4. The other 3 grades had equal shares among the rest.

34. PATHOLOGICAL COMPLETE RESPONSE POST NACT

Row Labels	FREQUENCY
RECEIVED NACT	46
NOT pCR	40
pCR	5
UNKNOWN	1
Grand Total	46

35. MARGIN STATUS

MARGIN STATUS	FREQUENCY	PERCENTAGE
MARGIN UNINVOLVED	93	86.92%
MARGIN INVOLVED	14	13.08%
Grand Total	107	100.00%

Out of the 107 patients with margin status on record, 86.92% had free margins while 13.08% patients had involved margins. Out of these except 1, all were operated cases of MRM and 1 case of BCS.

LVSI STATUS	FREQUENCY	PERCENTAGE
ABSENT	47	46.08%
INDETERMINATE	1	0.98%
PRESENT	54	52.94%
Grand Total	102	100.00%

36. LYMPHOVASCULAR SPACE INFILTRATION STATUS(LVSI)

Out of the 102 patients whose LVSI records were available, a majority of 52.94% had LVSI present and 46.08% had absent LVSI and 0.98% had an indeterminate status.

37. PERINEURAL INVASION

PNI STATUS	FREQUENCY	PERCENTAGE
Absent	75	74.26%
Present	26	25.74%
Grand Total	101	100.00%

Out of the 101 patients whose PNI records were available, a majority of 74.26% had PNI present and the rest had PNI absent.

38. EXTRA-NODAL EXTENSION STATUS

ENE STATUS	FREQUENCY	PERCENTAGE
ABSENT	75	73.53%
PRESENT	27	26.47%
Grand Total	102	100.00%

Out of the 102 patients whose ENE records were available, a majority of 73.53% had ENE present and the rest had ENE absent.

HER 2 STATUS	FREQUENCY	PERCENTAGE
EQUIVOCAL	19	17.59%
NEGATIVE	55	50.93%
NOT DONE	2	1.85%
POSITIVE	32	29.63%
Grand Total	108	100.00%

39. HER-2 NEU RECEPTOR STATUS BY IMMUNO-HISTOCHEMISTRY

Out of the 108 patients whose Her-2 neu status records were available, a majority of 50.93% were negative, 29.63% had Her-2 neu positive, 17.59% patients had equivocal Her 2 receptor status by IHC and the rest did not have Her 2 status on record.

40. <u>WHETHER FISH WAS DONE FOR HER-2 EOUIVOCAL PATIENTS OR</u> <u>NOT?</u>

FISH DONE?	FREQUENCY	PERCENTAGE
NO	7	36.84%
YES	12	63.16%
Grand Total	19	100.00%

41. HER-2 FISH STATUS?

FISH STATUS	FREQUENCY	PERCENTAGE	
NEGATIVE	6	60.00%	
POSITIVE	4	40.00%	
Grand Total	10	100.00%	

10 out of 12 patients FISH reports are available which on analysis showed 60% negativity and 40% positivity.

42. ESTROGEN RECEPTOR STATUS

ESTROGEN RECEPTOR	FREQUENCY	PERCENTAGE
NEGATIVE	35	32.11%
POSITIVE	74	67.89%
Grand Total	109	100.00%

Out of the 109 patients whose ER status records were available, a majority of 67.89% were positive and 32.11% had ER negative.

ALLRED SCORE	FREQUENCY	PERCENTAGE
0	31	31.96%
1	1	1.03%
2	1	1.03%
3	1	1.03%
4	1	1.03%
5	1	1.03%
6	2	2.06%
7	8	8.25%
8	51	52.58%
Grand Total	97	100.00%

43. ALLRED SCORE FOR ER STATUS ESTIMATION

Out of the 97 patients whose records were available a majority of 52.58% patients had a score of 8/8, followed by 31.96% patients with a score of 0.The rest had scores between 2 to 7.

44. PROGESTERONE RECEPTOR STATUS

PROGESTERONE RECEPTOR STATUS	FREQUENCY	PERCENTAGE
NEGATIVE	53	48.62%
POSITIVE	56	51.38%
Grand Total	109	100.00%

Out of the 109 patients whose PR status records were available, a majority of 51.38% were PR positive and 48.62% had PR negative.

45. <u>ALLRED SCORE FOR PROGESTERONE RECEPTOR STATUS</u>

ALLRED SCORE FOR PR STATUS	FREQUENCY	PERCENTAGE
0	47	48.45%
2	3	3.09%
3	1	1.03%
4	5	5.15%
5	3	3.09%
6	7	7.22%
7	5	5.15%
8	26	26.80%
Grand Total	97	100.00%

Out of the 97 patients whose records were available a majority of 48.45% patients had a score of 0/8, followed by 26.80% patients with a score of 8/8. The rest had scores between 2 to 7.

Row Labels	Count of Subtype
HER-2 ENRICHED	10
LUMINAL	82
TNBC	19
Grand Total	111

46. SUBTYPE OF BREAST CANCER

Out of the 111 patients assessed, 71.17% of patients were of Luminal subtype, 18.02% patients were of TNBC subtype, 9.01% patients were of Her-2 enriched subtype.

SUBTYPE	MEAN OF AGE IN YEARS
HER-2 ENRICHED	52.6
LUMINAL	53.64634146
TNBC	48.84210526

47. EFFECT OF SUBTYPE ON pCR.

ROW LABELS	FREQUENCY
RECEIVED NACT	46
HER-2 ENRICHED	2
NO	2
LUMINAL	34
NO	33
YES	1
TNBC	9
NO	5
YES	4
Grand Total	44

48. POST OPERATIVE HISTOPATHOLOGY

a. <u>pT STAGING</u>

T staging	FREQUENCY
ТО	3
T1	6
TIS	2
T1A	1
TIC	5
T2	51
Т3	8
T4B	4
Х	6
Grand Total	86

Out of 111 patients, post operative Histopathology reports of 86 patients were available. T2 staging was seen in majority of patients(59.3%) followed by 9.3% patients from T3 staging. The minimum were from T1a stage(1.16%).

b. **<u>POST OPERATIVE N STAGING</u>**

N staging	Frequency
NO	33
N 0(i+)	2
N 1	18
N 1(mi)	1
N 1A	13
N 1C	1
N 2	2
N 2A	7
N 2B	2
N 3	1
N 3A	4
N 3C	1
N X	1
Grand Total	86

49. POST-OPERATIVE PRIMARY TUMOUR LONG AXIS DIAMETER

Statistics

LAD		
Ν	Valid	84
	Missing	27
Mean		3.6369
Median		3.0000
Mode		3.00
Std. Deviation		2.48522
Variance		6.176
Range		14.00
Minimum		.00
Maximum		14.00

Out of the 84 patients whose records were available, the values of Post operative tumour Long axis diameter ranged from 0 to 14cm with a mean of 3.63cm.

50. <u>PRESENCE OR ABSENCE OF DUCTAL CARCINOMA IN SITU/LOBULAR</u> <u>CARCINOMA IN SITU</u>

Presence of DCIS/LCIS	Frequency	Percentage
ABSENT	67	60.36%
PRESENT	44	39.64%
Grand Total	111	100.00%

Out of the 111 patients whose records were available, 60.36% patients had specimens negative for DCIS/LCIS. 39.64% were positive for DCIS/LCIS.

51. DCIS UNIFOCAL VS MULTIFOCAL?

FOCALITY OF DCIS	FREQUENCY
Multifocal	14
Unifocal	30
Grand Total	44

52. MITOTIC COUNT(MICROTUBULES IN X/10)

Statistics

MICROTUBULE(X/10)

Ν	Valid	47
	Missing	64
Mean		10.6596
Median		9.0000
Mode		3.00
Std. Deviation		7.47249
Variance		55.838
Range		30.00
Minimum		.00
Maximum		30.00

Out of 47 patients whose data were available, their mitotic counts ranged from 0 to 30 with a mean of 10.65.

53. RECEIVED ADJUVANT CHEMOTHERAPY OR NOT?

RECEIVED ADJUVANT CHEMOTHERAPY?	FREQUENCY	PERCENTAGE
NO	27	24.77%
YES	82	75.2%
Grand Total	109	100.00%

Out of the 109 patients whose data about adjuvant chemotherapy were retrieved, 75.2% had received adjuvant chemotherapy while the rest had not.

54. ADJUVANT CHEMOTHERAPY REGIMENS

ADJ CHEMO REGIMEN	FREQUENCY
AC	3
AC-T	18
AC-TH	3
AC-TP	1
DOCETAXEL	1
EC	1
EC-T	3
EC-TH	1
FAC	1
FEC	11
Т	7
TAC	1
ТСН	3
TEC	25
TH	3
Grand Total	82

Page | 74

55. ADJUVANT CHEMOTHERAPY NUMBER OF CYCLES

ADJ CHEMO CYCLES	FREOUENCY
2	4
3	11
4	11
5	1
6	29
8	23
12	1
Grand Total	81

56. <u>RECEIVED ADJUVANT HORMONAL THERAPY?</u>

ON ADJ HT?	FREQUENCY
NO/RECORDS UNAVAILABLE	12
YES	64
Grand Total	76

57. HORMONAL THERAPY AGENTS

HORMONAL AGENT	FREQUENCY
ANASTRAZOLE	21
LETROZOLE	10
TAMOXIFEN	16
Grand Total	47

58. <u>RADIOTHERAPY</u>

a. <u>DURATION OF RT WITHOUT INCLUDING DURATION OF</u> <u>LUMPECTOMY BOOST</u>

Statistics

DURATION OF RT WITHOUT BOOST

Ν	Valid	109
	Missing	871
Mean		25.3853
Median		22.0000
Mode		22.00
Std. Deviation		8.05526
Variance		64.887
Range		69.00
Minimum		18.00
Maximum		87.00

b. DURATION(DAYS) FROM SURGERY TO START OF RT

DURATION FROM SURGERY TO START OF RT	COUNT
10-109	30
110-209	49
210-309	21
310-409	2
510-609	2
610-709	2
1310-1409	1
1410-1509	1
Grand Total	108

Statistics

DURATION FROM SURGERY TO START OF RT

Ν	Valid	108
	Missing	4
Mean		198.1481
Median		170.5000
Mode		91.00 ^a
Std. Deviation		197.21575
Range		1436.00
Minimum		26.00
Maximum		1462.00

c. <u>RADIOTHERAPY TECHNIOUE</u>

RT TECHNIQUE	COUNT
3DCRT	91
VMAT	19
Grand Total	110

82.7% of the 110 patients whose data were accrued had received RT by 3DCRT followed by

17.3 % of patients by VMAT.

d. <u>RADIOTHERAPY DOSE REGIMENS USED(Gy)</u>

DOSE(GY)	Count
40.05/15#	1
42.56/16#	99
50/25#	9
Grand Total	109

Out of the 109 patients whose data were available 90.83% patients received 42.56 Gy in 16# 8.26% patients received 50 Gy in 25 #.

e. <u>LUMPECTOMY BOOST REGIMENS</u>

BOOST DOSE	COUNT
10Gy/5#	25
12Gy/6#	4
Grand Total	29

Out of the 29 patients who received lumpectomy boost, 86.21% received 10 Gy in 5 fractions while the rest received 12 Gy in 6#.

TIME TO POST RADIOTHERAPY FOLLOW UP	FREQUENCY
0-99	19
100-199	26
200-299	11
300-399	9
400-499	10
500-599	4
600-699	1
700-799	5
800-899	4
900-999	6
1000-1099	2
1100-1199	4
1200-1299	2
1300-1400	1
Grand Total	104

59. TIME TO POST RADIOTHERAPY RESPONSE ASSESSMENT

Out of the 104 patients, whose data on follow up was available, the mean follow up time was 402 days with a median of 253.5 days.

Statistics

TIME TO POST RADIOTHERAPY FOLLOW UP

N	Valid	104
	Missing	7
Mean		402.5000
Median		253.5000
Mode		92.00 ^a
Std. Deviation		355.95099
Variance		126701.107
Range		1366.00
Minimum		27.00
Maximum		1393.00

60. <u>RESPONSE ASSESSMENT POST RADIOTHERAPY</u>

RESPONSE ASSESSMENT POST RADIOTHERAPY	Count
DISEASE FREE	98
RECURRENCE	8
Grand Total	106

61. DOSES TO HEART AND CARDIAC SUBSTRUCTURES IN PATIENTS WHO RECEIVED 42.56 GY/16#.

			St	atistics			
		LAD			LCX		HEART
		MEAN			MEAN	LC MEAN	MEAN
		DOSE(cGY	LAD	LAD	DOSE(cGY	DOSE(cGY	DOSE(cGY
)	V25	V45)))
N	Valid	33	33	33	33	33	51
	Missin	79	79	79	79	79	61
	g						
Mean		1255.5212	.8183	.0174	167.7424	260.5879	644.6235
Median		308.3000	.0000	.0000	120.0000	123.8000	535.8000
Mode		9.40 ^a	.00	.00	10.60 ^a	10.10 ^a	12.40 ^a

Std. Deviat	tion	1450.28156	1.1605	.0932	211.22634	447.03722	585.06239
			3	9			
Variance		2103316.60	1.347	.009	44616.565	199842.272	342297.995
		4					
Range		4185.30	3.44	.54	1043.20	2375.90	1972.60
Minimum		9.40	.00	.00	10.60	10.10	12.40
Maximum		4194.70	3.44	.54	1053.80	2386.00	1985.00
Percentile	10	22.4200	.0000	.0000	19.4600	19.5400	79.9000
S	20	76.4200	.0000	.0000	47.3200	75.5000	116.7200
	30	129.0600	.0000	.0000	58.7600	92.7200	135.6600
	40	177.8200	.0000	.0000	75.0000	99.8400	351.8600
	50	308.3000	.0000	.0000	120.0000	123.8000	535.8000
	60	1031.8400	.5044	.0000	151.5200	192.4800	618.4600
	70	2132.0200	1.2178	.0000	173.3400	209.3000	740.6400
	80	3188.7800	2.0254	.0000	208.7800	279.8200	1385.4000
	90	3544.9400	3.0474	.0024	456.3400	536.3600	1659.1800

a. Multiple modes exist. The smallest value is shown

62. EFFECT OF LATERALITY ON CARDIAC DOSES

LATERALITY	LEFT	RIGHT
AVERAGE OF LAD MEAN DOSE(CGY)	2299.482353	146.3125
AVERAGE OF LAD V45	0.033823529	0
AVERAGE OF LAD V25	1.588470588	0
AVERAGE OF LCX MEAN DOSE(CGY)	257.2705882	72.61875
AVERAGE OF LC MEAN DOSE(CGY)	413.9647059	97.625
AVERAGE OF HEART MEAN DOSE(CGY)	797.0705882	243.99375

63. DISEASE PROGRESSION/RECURRENCE

DISEASE PROGRESSION	Count
DISEASE FREE (0)	93
RECURRENT/ PROGRESSIVE DISEASE(1)	18
Grand Total	111

Out of the 111 patients, nearly 16% patients had disease progression on last follow up

LOCAL OR DISTANT RECURRENCE?

LOCAL OR DISTANT RECURRENCE?	COUNT
DISTANT RECURRENCE	13
LOCAL RECURRENCE	4
LOCAL AND DISTANT RECURRENCE	1
Grand Total	18

Amongst the 18 patients with documented recurrence, 72% had distant recurrences, 22% had local recurrences and the remaining had both local as well as distant recurrence.

64. SITE OF DISTANT METASTASIS?

SITE OF METS	Count
BONE	5
BRAIN	2
LIVER	4
PLEURAL	2
LYMPH NODAL	1
LUNG	3

A majority of 29% patients had one metastasis followed by 23% patients with Liver metastasis.

65. TREATMENT RECEIVED FOR RECURRENCE

Row Labels	Count
BEST SUPPORTIVE CARE	2
HORMONAL THERAPY	4
LOST TO FOLLOW UP	1
PALLIATIVE CHEMOTHERAPY	5
SURGICAL RESECTION	1
HER 2 DIRECTED THERAPY +HORMONAL THERAPY	1

66. <u>SURVIVAL STATUS AT LAST FOLLOW UP</u>

DEAD OR ALIVE AT LAST FOLLOW UP	COUNT
ALIVE	96
DEAD	15
Grand Total	111

Out of the 111 patients with accrued data, 86% were alive at last follow up and 14% had passed away.

67. <u>CAUSE OF DEATH</u>

CAUSE OF DEATH	Count
UNRELATED TO CANCER	8
CANCER RELATED	7
Grand Total	15

53% of the deaths by the time of last follow up were unrelated to cancer and 47% were cancer related deaths.

68. <u>OVERALL SURVIVAL</u>

OS IN MONTHS	COUNT
0-10	1
10-20	7
20-30	11
30-40	33
40-50	37
50-60	13
80-90	2
Grand Total	104

Statistics

os in months

Ν	Valid	104
	Missing	7
Mean		38.9788
Median		39.9833
Mode		33.07 ^a
Std. Deviation		12.05476
Variance		145.317
Range		77.83
Minimum		8.07
Maximum		85.90

Median survival could not be calculated because survival curve does not cross 50%.

69. <u>SITE WISE OS</u>

ROW LABELS	COUNT OF	AVERAGE	AVERAGE OF	AVERAGE
	EXAMINATION	OF OS IN	PFS/RFS IN	OF DFS IN
	SITE OF	MONTHS	MONTHS	MONTHS
	PRIMARY			
LOWER INNER	3	31.25555556	22.3222222	18.65555556
QUADRANT				
RETRO	13	33.08461538	31.27435897	26.71025641
AREOLAR				
LEFT OUTER	7	34.62777778	32.89333333	23.88333333
QUADRANT				
AXILLARY	2	37.4	37.4	33.31666667
TAIL				
UPPER OUTER	37	38.64504505	38.38828829	31.94414414
QUADRANT				
CHEST WALL	2	40.05	40.05	34.05

ALL	3	46.56666667	40.87777778	33.91111111
QUADRANT				
UPPER INNER	15	49.2	44.15	30.9444444
QUADRANT				
INFRA	1	51.36666667	51.36666667	44.16666667
MAMMARY				
FOLD				
AXILLA	1	52.26666667	52.26666667	45.03333333
Grand Total	84	39.37666667	37.58649789	30.31791667

70. PROGRESSION FREE SURVIVAL/RECURRENCE FREE SURVIVAL

PFS/RFS IN MONTHS	Count
0-10	5
10-20	5
20-30	13
30-40	33
40-50	32
50-60	13
80-90	2
Grand Total	103

Statistics

PFS/RFS IN MONTHS

Ν	Valid	103
	Missing	8
Mean		37.5799
Median		39.1000
Mode		23.03 ^a
Std. Deviation		13.57942
Variance		184.401
Range		85.53
Minimum		.37
Maximum		85.90

Out of 103 patients, the mean and median progression free survival/recurrence free survival was 37.5 months and 39.1 months respectively and ranging from 85.9 to 0.37 months.

71. DISEASE FREE SURVIVAL

DFS	Count
0-10	9
10-20	8
20-30	24
30-40	47
40-50	17
Grand Total	105

Statistics

DFS IN MONTHS

Ν	Valid	105
	Missing	6
Mean		30.5854
Median		33.1667
Mode		34.03 ^a
Std. Deviation		11.01005
Variance		121.221
Range		45.00
Minimum		3.03
Maximum		48.03

Out of 103 patients, the mean and median Disease free survival was 30.5 months and 33.1 months respectively and ranging from 3.03 to 48.03 months.

72. CARDIAC WORKUP POST TREATMENT

a. <u>NT-PRO NP LEVELS</u>

NT PRO BNP	Count
10-109	22
110-209	8
210-309	3
310-409	2
710-809	1
Grand Total	36

b. EJECTION FRACTION AT FOLLOW UP

EJECTION FRACTION(%)	Count
0-10	1
40-50	1
50-60	5
60-70	26
70-80	1
Grand Total	34

Row Labels	Count of MPI
0.2-0.3	7
0.3-0.4	9
0.4-0.5	9
0.5-0.6	2
0.6-0.7	5
0.8-0.9	2
Grand Total	34

c. MYOCARDIAL PERFORMANCE INDEX

d. CORRECTED OT SEGMENT INTERVAL

Row Labels	Count of QTC
400-409	1
410-419	6
420-429	2
430-439	3
440-449	5
450-459	5
460-469	1
470-479	2
490-499	2
510-519	1
520-529	1
Grand Total	29

		NT PRO	EJECTION				
		BNP	FRACTION	MPI	QTC	TWPTE(ms)	
Ν	Valid	36	33	34	29	29	
Mean		137.9167	61.7606	.4267	447.2069	105.1724	
Median		103.5000	62.0000	.4000	444.0000	100.0000	
Mode		30.00 ^a	60.00	.40	419.00 ^a	80.00	
Std. Deviat	ion	134.60745	5.16478	.16137	29.33109	37.57095	
Variance		18119.164	26.675	.026	860.313	1411.576	
Range		717.00	28.00	.66	111.00	120.00	
Minimum		25.00	42.00	.20	409.00	40.00	
Maximum		742.00	70.00	.86	520.00	160.00	

73. <u>ANALYSIS OF TIME FOR END OF RADIOTHERAPY AND RELATION</u> <u>WITH MARKERS OF SUCLINICAL CARDIOTOXICITY.</u>

74. <u>MEDIAN DURATION OF FOLLOW UP BY REVERSE KAPLAN MEIER</u> <u>ANALYSIS</u>

Means and Medians for Survival Time

		Mean ^a		Median				
		95% Confide	ence Interval			95% Confidence Interva		
	Std.	Lower	Upper		Std.	Lower	Upper	
Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
41.301	1.176	38.996	43.606	40.700	.540	39.642	41.758	

a. Estimation is limited to the largest survival time if it is censored.

75. <u>SURVIVAL ANALYSIS-DEMOGRAPHIC VARIABLES COX REGRESSION</u> <u>SURVIVAL ANALYSIS</u>

							95.0	0% CI for
					Р	Hazard	I	Exp(B)
	В	SE	Wald	df	value	ratio	Lower	Upper
RELIGION	-2.280	.934	5.962	1	.015	.102	.016	.638
AGE	1.506	.950	2.514	1	.113	4.507	.701	28.985
OBESE			1.451	2	.484			
OVERWEIGHT	828	.695	1.418	1	.234	.437	.112	1.707
NORMAL WEIGHT	276	.895	.095	1	.758	.759	.131	4.382
ANY	1.678	1.148	2.138	1	.144	5.357	.565	50.808
COMORBIDITY								
PREMENSTRUAL			3.510	2	.173			
POSTMENSTRUAL	9.079	112.879	.006	1	.936	8771.082	.000	1.060E+100
PERIMENSTRUAL	10.871	112.879	.009	1	.923	52629.232	.000	6.368E+100

Variables in the Equation

	Mean ^a					Median			
			95% Co	nfidence			95% Co	nfidence	
			Interval				Interval		
		Std.	Lower	Upper		Std.	Lower	Upper	
religion	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
HINDU	76.000	2.884	70.347	81.652					
MUSLIM	30.444	3.181	24.209	36.679	29.367	4.137	21.258	37.475	
Overall	75.063	2.902	69.375	80.752	•		•	•	

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Means and Medians for Survival Time

	Median							
			95% Confidence				95% Co	nfidence
			Interval				Interval	
		Std.	Lower	Upper		Std.	Lower	Upper
AGESTRAT	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
<50	51.163	1.886	47.466	54.860	•	•	•	•
>50	76.119	3.701	68.865	83.374		•		•
Overall	75.063	2.902	69.375	80.752	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Means and Medians for Survival Time

	Mean ^a					Median			
			95% Confidence				95% Co	95% Confidence	
			Interval				Interval		
		Std.	Lower	Upper		Std.	Lower	Upper	
COMORIDITIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
NO	51.642	1.739	48.234	55.051		•	•		
COMORBIDITY									
WITH	83.492	2.350	78.886	88.098		•	•	•	
COMORBIDITY									
Overall	75.063	2.902	69.375	80.752			•		

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	3.742	1	.053

The vector of trend weights is -1, 1. This is the default.

EFFECT OF BMI ON OS:

Means and Medians for Survival Time

		M	ean ^a		Median			
			95% Confidence				95% Co	nfidence
			Interval				Interval	
		Std.	Lower	Upper		Std.	Lower	Upper
BMICATEGORIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
OBESE	78.165	3.300	71.697	84.633				
OVERWEIGHT	50.848	3.638	43.717	57.980	•			
NORMAL	46.040	2.594	40.955	51.124		•		
WEIGHT								
Overall	75.547	2.893	69.876	81.217	•			

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	2.213	1	.137

The vector of trend weights is -1, 0, 1. This is the default.

EFFECT OF LATERALITY ON OVERALL SURVIVAL:

	Mean ^a						Median			
			95% Confidence				95% Co	onfidence		
			Interval				Int	Interval		
		Std.	Lower	Upper		Std.	Lower	Upper		
LATERALITY	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound		
LEFT	53.224	1.740	49.813	56.635	•	•	•	•		
RIGHT	75.113	4.659	65.981	84.245	•					
Overall	75.063	2.902	69.375	80.752	•	•	•	•		

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.089	1	.766

The vector of trend weights is -1, 1. This is the default.

EFFECT OF MENSTRUAL STATUS ON OVERALL SURVIVAL:

		Me	an ^a		Median			
			95	%			95	5%
			Confidence				Confi	dence
			Interval				Interval	
		Std.	Lower	Upper		Std.	Lower	Upper
MENSTRUALSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
PREMENSTRUAL	51.447	2.135	47.264	55.631	•			
POST MENSTRUAL	73.093	4.387	64.495	81.691				
PERI MENSTRUAL	51.830	2.090	47.733	55.927				
Overall	75.063	2.902	69.375	80.752	•			•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.130	1	.718

The vector of trend weights is -1, 0, 1. This is the default.

76. <u>PROGRESSION FREE SURVIVAL/RECURRENCE FREE SURVIVAL-</u> <u>DEMOGRAPHIC VARIBALES</u>

KAPLAN MEIER ANALYSIS:

a. <u>AGE</>50</u>

Means and Medians for Survival Time

Mean ^a					Median			
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
AGESTRAT	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
AGE<50	51.925	1.770	48.456	55.394		•		
AGE>50	65.904	6.914	52.352	79.456	•	·		
Overall	67.381	6.693	54.262	80.500	•	•	•	•

a.Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.467	1	.494

The vector of trend weights is -1, 1. This is the default.

b) EFFECT OF BMI ON PFS/RFS

Means and Medians for Survival Time

	Mean ^a						edian	
			95% Cor	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
BMICATEGORIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
OBESITY	68.311	7.008	54.575	82.048				
OVERWEIGHT	50.713	3.739	43.385	58.041				
NORMAL	46.955	2.572	41.914	51.996		•	•	•
WEIGHT								
Overall	67.788	6.757	54.545	81.031	•		•	

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.116	1	.733

The vector of trend weights is -1, 0, 1. This is the default.

c) <u>EFFECT OF RELIGION ON PFS/RFS</u>

Means and Medians for Survival Time

	Iean ^a	Median						
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
religion	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
HINDU	67.681	6.740	54.471	80.891	•			•
MUSLIM	30.950	4.749	21.641	40.259	24.233	•	•	•
Overall	67.381	6.693	54.262	80.500	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.995	1	.319

The vector of trend weights is -1, 1. This is the default.

d) EFFECT OF PRESENCE OF COMORIDITIES ON PFS/RFS

		Μ	ean ^a	Median				
			95% Coi	nfidence			95% Co	nfidence
			Inte	Interval			Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
COMORIDITIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
WITH	51.332	1.847	47.713	54.952	58.000	.000		•
WITHOUT	77.065	4.183	68.867	85.264		•		•
Overall	67.381	6.693	54.262	80.500	•	•		•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.922	1	.337

The vector of trend weights is -1, 1. This is the default.

e) EFFECT OF MENSTRUAL STATUS ON PFS/RFS

		Me	an ^a			Mee	lian	
			95%				95	5%
			Confidence				Confi	dence
			Interval				Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
MENSTRUALSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
PRE MENSTRUAL	52.424	1.954	48.594	56.254				
POST MENSTRUAL	66.676	7.001	52.954	80.399	•	•	•	
PERI MENSTRUAL	45.871	4.055	37.922	53.819	•	•	•	•
Overall	67.381	6.693	54.262	80.500	•	•	•	•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.353	1	.245

The vector of trend weights is -1, 0, 1. This is the default.

f) <u>EFECT OF LATERALITY ON PFS/RFS</u>

Means and Medians for Survival Time

Mean ^a					Median			
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
LATERALITY	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
LEFT	51.360	2.153	47.140	55.581	58.000	.000		
RIGHT	76.154	3.435	69.422	82.886		•		
Overall	67.381	6.693	54.262	80.500		•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.557	1	.456

The vector of trend weights is -1, 1. This is the default.

77. EFFECT OF DEMOGRAPHIC VARIABLES ON DFS- A KAPLAN MEIER SURVIVAL ANALYSIS.

a. EFFECT OF AGE WISE STRATIFICATION ON DFS:

Mean ^a					Median			
			95% Confidence				95% Co	onfidence
			Interval				Inte	erval
		Std.	Lower Upper			Std.	Lower	Upper
AGESTRAT	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
AGE<=50	43.926	1.581	40.828	47.024		•		
AGE>50	38.796	1.760	35.345	42.246		•	•	
Overall	42.206	1.276	39.705	44.706	•	•	•	-

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.300	1	.254

b. EFFECT OF BMI ON DFS

Means and Medians for Survival Time

	Mean ^a						edian	
			95% Co	onfidence			95% Co	onfidence
			Inte	erval			Inte	erval
		Std.	Lower	Upper		Std.	Lower	Upper
BMICATEGORIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
OBESITY	42.893	1.527	39.899	45.886	•	•	•	
OVERWEIGHT	40.789	2.756	35.388	46.190				
NORMAL	38.695	2.735	33.335	44.055		•		
WEIGHT								
Overall	42.399	1.274	39.902	44.896	•	•	•	·

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.302	1	.582

c. EFFECT OF RELIGION ON DFS

Means and Medians for Survival Time

Mean ^a					Median				
			95% Cor	nfidence			95% Co	onfidence	
			Interval				Inte	erval	
		Std.	Lower	Upper		Std.	Lower	Upper	
religion	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
HINDU	42.422	1.271	39.930	44.913	•				
MUSLIM	23.989	4.609	14.956	33.022	•		•	•	
Overall	42.206	1.276	39.705	44.706	•		•	•	

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.344	1	.246

d. EFFECT OF COMORBIDITY STATUS ON DFS

		Μ	ean ^a			Μ	edian	
			95% Co	nfidence			95% Co	nfidence
			Interval				Interval	
		Std.	Lower	Upper		Std.	Lower	Upper
COMORIDITIES	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
NO	41.510	1.590	38.393	44.627		•	•	•
COMORIDITY								
COMORBIDITY	43.323	2.082	39.242	47.404		•		•
PRESENT								
Overall	42.206	1.276	39.705	44.706		•		•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.751	1	.386

e. EFFECT OF MENSTRUAL STATUS ON DFS

Means and Medians for Survival Time

		an ^a			Med	lian		
			95	%			95	%
			Confidence				Confi	dence
			Inte	rval			Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
MENSTRUALSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
PREMENSTRUAL	44.323	1.763	40.867	47.778	•			
POSTMENSTRUAL	39.148	1.756	35.705	42.591				•
PERIMENSTRUAL	40.155	3.733	32.839	47.471				•
Overall	42.206	1.276	39.705	44.706				•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.594	1	.207

f) EFFECT OF LATERALITY ON DFS

Means and Medians for Survival Time

Mean ^a					Median			
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower Upper			Std.	Lower	Upper
LATERALITY	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
LEFT	41.174	1.878	37.494	44.854	•	•	•	•
RIGHT	43.336	1.681	40.042	46.629				
Overall	42.206	1.276	39.705	44.706	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.764	1	.382

78. PRESURGICAL CONSIDERATIONS ON OVERALL SURVIVAL:

a. <u>PRE SURGICAL STAGING :</u>

The vector of trend weights is -3, -1, 1, 3. This is the default.

Mean overall survival could not be calculated due to censored events.

b. EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON OVERALL SURVIVAL BY COX REGRESSION ANALYSIS.

Variables in the Equation

							95.0%	CI for
							Exp	b (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
LAD	.048	.114	.173	1	.677	1.049	.838	1.312
SAD	.515	.368	1.958	1	.162	1.674	.814	3.443

c. <u>EFFECT OF NEOADJUVANT CHEMOTHERAPY STATUS ON</u> <u>OVERALL SURVIVAL</u>

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	7.767	1	.005

79. <u>PRESURGICAL CONSIDERATIONS: ON PROGRESSION FREE</u> <u>SURVIVAL/RECURRENCE FREE SURVIVAL</u>

a. EFFECT OF LONG AXIS DIAMETER OF TUMOUR AND SHORT AXIS NODAL DIAMETER ON PFS /RFS BY COX REGRESSION ANALYSIS.

Variables in the Equation									
							95.0%	CI for	
							Exp	o (B)	
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper	
LAD	.208	.096	4.667	1	.031	1.231	1.019	1.486	
SAD	.767	.403	3.613	1	.057	2.153	.976	4.748	

Covariate Means

	Mean
LAD	4.052
SAD	1.409

b. EFFECT OF NEOADJUVANT CHEMOTHERAPY STATUS ON <u>PFS/RFS</u>

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	8.284	1	.004

The vector of trend weights is -1, 0, 1. This is the default.

c. EFFECT OF PRESURGICAL STAGE ON PFS/RFS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	2.315	1	.128
	1 0 51 1 1 1 0	1.	

The vector of trend weights is -3, -1, 1, 3. This is the default.

80. EFFECT OF PRESURGICAL CONSIDERATIONS ON DFS

a. EFFECT OF LONG AXIS DIAMETER OF PRIMARY TUMOUR AND SHORT AXIS NODAL DIAMETER ON DFS BY COX REGRESSION ANALYSIS

							95.0%	CI for
							Exp	o (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
LAD	.178	.091	3.799	1	.05	1.195	.999	1.429
SAD	.983	.350	7.891	1	.005	2.673	1.346	5.307

Variables in the Equation

Covariate Means

b) EFFECT OF NEOADJUVANT CHEMOTHERAPY STATUS ON DFS

		Μ		Μ	edian						
			95% Co	nfidence			95% Co	nfidence			
			Inte	erval			Inte	rval			
RECEIVED		Std.	Lower	Upper		Std.	Lower	Upper			
NACT?	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound			
NO NACT	44.723	1.307	42.161	47.285	•	•	•	•			
RECEIVED	38.547	2.357	33.927	43.167				•			
NACT											
Overall	42.206	1.276	39.705	44.706	•		•	•			

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	6.153	1	.013

c) EFFECT OF PRESURGICAL STAGE ON DFS

Means and Medians for Survival Time

Mean ^a						Ν	Iedian	
			95% Coi	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
stage	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
1.00	41.513	5.802	30.142	52.885				
2.00	45.851	1.079	43.735	47.966		•		
3.00	35.501	2.870	29.875	41.127		•		
4.00	28.933	9.798	9.729 48.137				•	
Overall	42.888	1.282	40.374	45.401	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	7.026	1	.008

81. SURGICAL FACTORS AFFECTING OVERALL SURVIVAL

a. EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER OF POSITIVE NODES ON OVERALL SURVIVAL BY COX REGRESSION **ANALYSIS**

							95.0%	CI for
							Exp	v (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
NODES	.024	.014	2.708	1	.100	1.024	.995	1.053
DISSECTED								
NODES	.071	.037	3.607	1	.058	1.073	.998	1.154
POSITIVE								
			Covaria	te Means				
							Moon	

Variables in the Equation

Mean

NODES DISSECTED	18.327
NODES POSITIVE	3.010

b. EFFECT OF ADEOUACY OF NODAL DISSECTION ON OVERALL SURVIVAL

Means and Medians for Survival Time

	Mean ^a					Med	lian	
			95%				95	%
			Confi	dence			Confi	dence
			Inte	rval			Inte	rval
							Lowe	
						Std.	r	Upper
ADEQUATEDISSECTIO	Estimat	Std.	Lower	Upper	Estimat	Erro	Boun	Boun
Ν	e	Error	Bound	Bound	e	r	d	d
INADEQUATE	49.064	2.81	43.55	54.57	•			
DISSECTION		1	4	4				
ADEQUATE	74.495	3.13	68.34	80.64				
DISSECTION		8	5	6				
Overall	75.063	2.90	69.37	80.75	•			•
		2	5	2				

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.272	1	.602

c. EFFECT OF TYPE OF SURGERY ON OVERALL SURVIVAL

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	2.021	1	.155

82. SURGICAL FACTORS AFFECTING PFS/RFS a. EFFECT OF NUMBER OF DISSECTED NODES AND NUMER OF POSITIVE NODES ON PFS/RFS BY COX REGRESSION ANALYSIS

							95.0%	CI for
							Exp	v (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
NODES	.021	.014	2.129	1	.145	1.021	.993	1.049
DISSECTED								
NODES	.056	.036	2.478	1	.115	1.057	.986	1.134
POSITIVE								

Variables in the Equation

Covariate Means

	Mean
NODES DISSECTED	18.327
NODES POSITIVE	2.851

b) EFFECT OF ADEOUACY OF NODAL DISSECTION ON PFS/RFS

Kaplan-MeierMeans and Medians for Survival TimeMean^aMedian

	ivicuit			moduli				
			95%				95	%
			Confi	dence			Confi	dence
			Inte	rval			Inte	rval
							Lowe	
						Std.	r	Upper
ADEQUATEDISSECTIO	Estimat	Std.	Lower	Upper	Estimat	Erro	Boun	Boun
Ν	e	Error	Bound	Bound	e	r	d	d
INADEQUATE	42.654	4.75	33.34	51.96	•	•		
		2	0	8				
ADEQUATE	68.242	6.77	54.95	81.52	•			
		7	8	5				
Overall	67.381	6.69	54.26	80.50	•			•
		3	2	0				

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.965	1	.326

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.391	1	.532

83. <u>SURGICAL FACTORS AFFECTING DFS</u>

a. <u>EFFECT OF NUMBER OF DISSECTED NODES AND NUMBER</u> <u>OF POSITIVE NODES ON DFS BY COX REGRESSION</u> <u>ANALYSIS</u>

							95.0%	CI for
							Exp	b (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
NODES	.018	.014	1.725	1	.189	1.019	.991	1.047
DISSECTED								
NODES	.060	.036	2.831	1	.092	1.062	.990	1.139
POSITIVE								

Variables in the Equation

Covariate Means

	Mean
NODES DISSECTED	18.228
NODES POSITIVE	2.871

b. EFFECT OF ADEOUACY OF NODAL DISSECTION ON DFS

Kaplan Meier

Means and Medians for Survival Time

	Mean ^a					Med	lian	
			95%				95	5%
			Confi	dence			Confi	dence
			Inte	rval			Inte	rval
							Lowe	
						Std.	r	Upper
ADEQUATEDISSECTIO	Estimat	Std.	Lower	Upper	Estimat	Erro	Boun	Boun
Ν	e	Error	Bound	Bound	e	r	d	d
INADEQUATE	36.212	3.99	28.38	44.04		•	•	•
		6	0	5				
ADEQUATE	42.635	1.30	40.08	45.18	•			•
		1	5	5				
Overall	42.206	1.27	39.70	44.70	•			•
		6	5	6				

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.383	1	.536

c. EFFECT OF TYPE OF SURGERY ON DFS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.035	1	.851

84. <u>EFFECT OF HISTOPATHOLOGICAL VARIABLES ON OVERALL</u> <u>SURVIVAL</u>

a. EFFECT OF MODIFIED BLOOM RICHARDSON SCORE ON OS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.010	1	.918
		C 1.	

The vector of trend weights is -2, -1, 0, 1, 2. This is the default.

b. EFFECT OF GRADE OF TUMOUR ON OS

The vector of trend weights is -1, 0, 1. This is the default.

c. EFFECT OF MARGIN STATUS ON OS

Means and Medians for Survival Time

	Mean ^a					Me	edian	
			95% Co	onfidence			95% Co	onfidence
			Interval				Inte	erval
		Std.	Lower	Upper		Std.	Lower	Upper
MARGINSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
UNINVOLVED	75.486	3.196	69.221	81.751		•		
INVOLVED	46.222	3.440	39.479	52.965	•	•	•	•
Overall	75.063	2.902	69.375	80.752	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.028	1	.311

The vector of trend weights is -1, 1. This is the default.

d. EFFECT OF LYMPHOVASCULAR STROMAL INVASION STATUS ON OS

Means and Medians for Survival Time

	Mean ^a					Ν	ledian	
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
LVSI	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	51.099	1.410	48.335	53.864				
PRESENT	73.702	3.736	66.379	81.024	•	•	•	•
Overall	75.063	2.902	69.375	80.752				

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.534	1	.465

The vector of trend weights is -1, 0, 1. This is the default.

e. EFFECT OF PERINEURAL INFILTRATION STATUS ON OS

	Mean ^a					M	ledian	
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
PNI	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	76.159	3.776	68.758	83.561		•	•	
PRESENT	70.612	5.420	59.988	81.236	•		•	•
Overall	75.063	2.902	69.375	80.752	•	•	•	•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons						
	Chi-Square	df	Sig.			
Log Rank (Mantel-Cox)	1.695	1	.193			

The vector of trend weights is -1, 0, 1. This is the default.

f. EFFECT OF EXTRANODAL EXTENSION STATUS ON OS

Means and Medians for Survival Time

	Mean ^a					M	Iedian	
			95% Co	nfidence			95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
ENE?	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	74.765	3.727	67.459	82.071	•	•	•	•
PRESEN	53.147	2.480	48.287	58.008			•	•
Overall	75.063	2.902	69.375	80.752	•		•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

g. <u>EFFECT OF POST OPERATIVE TUMOR LONG AXIS</u> <u>DIAMETER ON OS BY COX REGRESSION ANALYSIS</u>

Variables in the Equation									
							95.0%	CI for	
							Exp	o (B)	
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper	
LAD	.112	.088	1.617	1	.204	1.119	.941	1.331	
	Covariate Means								

	Mean
LAD	3.621

h. EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON OS

		ean ^a			Me	edian		
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
DCIS/LCIS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	77.270	3.225	70.948	83.592	•	•	•	•
PRESENT	50.466	2.104	46.341	54.590	•	•	•	•
Overall	75.063	2.902	69.375	80.752	•	•	•	•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.688	1	.407

i. EFFECT OF MOLECULAR SUBTYPE OF BREAST CANCER ON OS

Means and Medians for Survival Time

	Mean ^a					Μ	edian	
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
Subtype	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
HER-2 E	46.298	3.332	39.767	52.830	45.000	14.847	15.901	74.099
LUMINAL	77.280	2.540	72.302	82.257	•	•	•	•
TNBC	48.021	2.334	43.446	52.597	47.967	•		•
Overall	75.063	2.902	69.375	80.752	•	•		•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.161	1	.688

k. EFFECT OF POST OPERATIVE N STAGE ON OS

Means and Medians for Survival Time

Mean^a

•	. т
12	х т.
	N
-	

Median

			95% Confidence				95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	52.417	1.093	50.274	54.561	•			•
1.00	53.149	2.510	48.230	58.068				
2.00	39.421	3.926	31.727	47.116		•		
3.00	38.193	2.659	32.981	43.406		•	•	•
Overall	53.122	1.539	50.106	56.138		•		

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	3.802	1	.051
	1 1 C 1		

The vector of trend weights is -3, -1, 1, 3. This is the default.

85. <u>EFFECT OF HISTOPATHOLOGICAL VARIABLES ON PFS/RFS</u> a. <u>EFFECT OF MODIFIED BLOOM RICHARDSON SCORE ON</u> <u>PFS/RFS</u>

Overall Comparisons

The vector of trend weights is -2, -1, 0, 1, 2. This is the default.

b. EFFECT OF GRADE OF TUMOUR ON PFS/RFS

Means and Medians for Survival Time

	Mean ^a					Μ	edian	
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
GRADE	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
1.00	46.442	4.265	38.082	54.801	•	•	•	•
2.00	71.177	7.477	56.523	85.831	•	•	•	•
3.00	48.896	2.190	44.602	53.189			•	
Overall	69.984	7.033	56.199	83.769		•		•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.005	1	.942

c. EFFECT OF MARGIN STATUS ON PFS/RFS

		ean ^a			Me	edian		
		95% Confidence				95% Co	onfidence	
			Inte	erval			Int	erval
		Std.	Lower	Upper		Std.	Lower	Upper
MARGINSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	68.006	6.810	54.658	81.354	•			•
1.00	45.245	3.962	37.479	53.010	•			•
Overall	67.381	6.693	54.262	80.500	•	•	•	•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.680	1	.410

d. <u>EFFECT OF LYMPHOVASCULAR STROMAL INVASION</u> <u>STATUS ON PFS/RFS</u>

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.957	1	.328

The vector of trend weights is -1, 0, 1. This is the default.

e. <u>EFFECT OF PERINEURAL INFILTRATION STATUS ON</u> <u>PFS/RFS</u>

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.878	1	.349

f. EFFECT OF EXTRANODAL EXTENSION STATUS ON PFS/RFS

	C	Overall Comparisons			
		Chi-Square	df	Sig.	
Log Rank (Mante	el-Cox)	.905	1	.34	
The vector of tren	d weights is -1, 0,	1. This is the default.			
	1	Survival Functions	-		
		•			
0.8		+****		SEN ored ENT-censored	
-			PRES	SEN-censored	
Surviv.					
B 0.4					
0.2					
0.0					
.00	20.00 40.00 PFS II	NMONTHS	100.00		
g.	EFFECT OF PC	OST OPERATIVE TUN	AOR LONG AX	KIS	
C	DIAMETER ON	N PFS/RFS BY COX RI	EGRESSION A	NALYSIS	
	Va	riables in the Equation			
			Ģ	95.0% CI for	
				Exp(B)	

	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
LAD	.051	.099	.264	1	.608	1.052	.866	1.279

Means and Medians for Survival Time

Mean ^a				Median				
			95% Confidence				95% Confidence	
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
DCIS/LCIS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
-	66.657	6.944	53.047	80.267	•	•	•	•
+	51.472	1.941	47.668	55.276	•	•	•	•
Overall	67.381	6.693	54.262	80.500	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.082	1	.775

h. EFFECT OF MOLECULAR SUBTYPE OF BREAST CANCER ON PFS/RFS

Tricans and Triculans for Survival Time											
Mean ^a						Μ	ledian				
			95% Co	nfidence			95% Co	nfidence			
			Inte	rval			Inte	rval			
		Std.	Lower	Upper		Std.	Lower	Upper			
Subtype	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound			
HER-2 E	49.530	2.818	44.008	55.052	•						
LUMINAL	65.657	6.652	52.619	78.696		•					
TNBC	49.657	2.277	45.195	54.120	•	•					
Overall	67.381	6.693	54.262	80.500							

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.243	1	.622

Overall Comparisons							
	Chi-Square	df	Sig.				
Log Rank (Mantel-Cox)	1.719	1	.190				

j. EFFECT OF POST OPERATIVE N STAGE ON PFS/RFS

Means and Medians for Survival Time

	Mean ^a					Ν	Iedian	
			95% Co	nfidence			95% Co	onfidence
			Inte	rval			Inte	erval
		Std.	Lower	Upper		Std.	Lower	Upper
Ν	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	51.887	1.469	49.008	54.767				
1.00	50.783	2.891	45.116	56.450	58.000	.000	•	•
2.00	39.592	4.847	30.092	49.093	•		•	•
3.00	34.242	5.016	24.411	44.072	•	•	•	•
Overall	51.874	1.719	48.504	55.244	58.000	.000	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	3.268	1	.071

86. EFFECT OF HISTOPATHOLOGICAL VARIABLES ON DFS

a. EFFECT OF MODIFIED BLOOM RICHARDSON SCORE ON DFS

	• • • • • • • • • • • • • • • • • • •		
	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.053	1	.818

Overall Comparisons

The vector of trend weights is -2, -1, 0, 1, 2. This is the default.

b. EFFECT OF GRADE OF TUMOUR ON DFS

Means and Medians for Survival Time

		Ν	/Iean ^a		Median				
			95% Co	nfidence			95% Co	nfidence	
			Inte	erval			Inte	rval	
		Std.	Lower	Upper		Std.	Lower	Upper	
GRADE	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
1.00	39.608	4.640	30.513	48.704					
2.00	44.007	1.922	40.240	47.774	•		•	•	
3.00	41.241	2.028	37.265	45.216	•	•	•	•	
Overall	43.777	1.412	41.009	46.545	•		•	•	

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.012	1	.914

c. EFFECT OF MARGIN STATUS ON DFS

Means and Medians for Survival Time

		M		Me	edian			
			95% Confidence				95% Co	nfidence
			Inte	rval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
MARGINSTATUS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
FREE	42.431	1.352	39.781	45.082			•	•
INVOLVED	38.640	3.489	31.801	45.480			•	•
Overall	42.206	1.276	39.705	44.706	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.341	1	.559

d. <u>EFFECT OF LYMPHOVASCULAR STROMAL INVASION</u> <u>STATUS ON DFS</u>

	Mean ^a					Μ	ledian	
			95% Confidence				95% Co	onfidence
			Inte	erval			Inte	erval
		Std.	Lower	Upper		Std.	Lower	Upper
LVSI	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	42.682	1.896	38.965	46.399				
PRESENT	41.547	1.855	37.911	45.182				
Overall	42.206	1.276	39.705	44.706		•		•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.443	1	.506

e. EFECT OF PERINEURAL INFILTRATION STATUS ON DFS

		Ν	Mean ^a			Ν	Iedian	
			95% Co	nfidence			95% C	onfidence
			Inte	rval			Int	terval
	Estimat	Std.	Lower	Upper	Estimat	Std.	Lower	Upper
PNI	e	Error	Bound	Bound	е	Error	Bound	Bound
ABSEN	42.362	1.531	39.361	45.363				
Т								
PRESE	39.545	2.420	34.802	44.288		•		
Ν								
Overall	42.206	1.276	39.705	44.706				
			Ov	erall Comp	arisons			
				Chi-Squ	are	df		Sig.
Log Rank	k (Mantel-	Cox)			.375		1	.541

f. EFFECT OF EXTRANODAL EXTENSION STATUS ON DFS

Means and Medians for Survival Time										
Mean ^a						Ν	Iedian			
			95% Co	nfidence			95% Co	nfidence		
			Inte	rval			Inte	rval		
		Std.	Lower	Upper		Std.	Lower	Upper		
ENE?	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound		
	39.689	4.096	31.661	47.717				•		
ABSENT	42.524	1.490	39.603	45.445		•				
PRESEN	39.286	2.514	34.359	44.214			•	•		
Overall	42.206	1.276	39.705	44.706	•		•	•		

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.250	1	.617

g. <u>EFFECT OF POST OPERATIVE TUMOR LONG AXIS</u> <u>DIAMETER ON DFS BY COX REGRESSION ANALYSIS</u>

Variables in the Equation										
							95.0%	CI for		
							Exp	o (B)		
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper		
LAD	.073	.088	.688	1	.407	1.076	.905	1.279		

Covariate Means

Mean

h. EFFECT OF PRESENCE OR ABSENCE OF DCIS/LCIS ON DFS

	Mean ^a					Μ	edian	
			95% Co	95% Confidence			95% Co	nfidence
			Inte	erval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
DCIS/LCIS	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
ABSENT	41.020	1.762	37.568	44.473	•	•	•	•
PRESENT	43.628	1.682	40.332	46.924			•	
Overall	42.206	1.276	39.705	44.706	•	•	•	•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.372	1	.542

i. EFFECT OF MOLECULAR SUBTYPE OF BREAST CANCER ON DFS

Means and Medians for Survival Time

	Mean ^a						edian	
			95% Co	nfidence			95% Co	nfidence
			Inte	erval			Inte	rval
		Std.	Lower	Upper		Std.	Lower	Upper
Subtype	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
HER-2 E	35.250	1.692	31.934	38.566			•	•
LUMINAL	41.081	1.582	37.981	44.181			•	•
TNBC	41.872	2.100	37.756	45.989		•	•	•
Overall	42.206	1.276	39.705	44.706	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.291	1	.590

The vector of trend weights is -1, 0, 1. This is the default.

j. EFFECT OF POST OPERATIVE T STAGE ON DFS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.250	1	.264

k. EFFECT OF POST OPERATIVE N STAGE ON DFS

		Ν	/Iean ^a	Median				
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	erval
		Std.	Lower	Upper		Std.	Lower	Upper
Ν	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	46.002	1.372	43.313	48.691	•	•	•	•
1.00	39.248	2.099	35.134	43.362			•	•
2.00	33.943	4.335	25.446	42.440			•	
3.00	29.950	4.345	21.435	38.465	•		•	•
Overall	42.494	1.412	39.726	45.261	•	•		•

Means and Medians for Survival Time

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	3.559	1	.059

SURVIVAL:

a. EFFECT OF TIME FROM DATE OF SURGERY TO START OF RT AND DURATION OF RADIOTHERAPY ON OVERALL SURVIVAL BY CO X REGRESSION ANALYSIS.

Variables in	the Equation
--------------	--------------

							95.0%	CI for
							Exp	o (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
DURATION OF	029	.061	.218	1	.641	.972	.862	1.096
RT WITHOUT								
BOOST								
DURATION	006	.004	2.229	1	.135	.994	.987	1.002
FROM SURGERY								
TO START OF RT								
TIME TO POST	.000	.001	.079	1	.779	1.000	.998	1.002
RADIOTHERAPY								
FOLLOW UP								

	Mean
DURATION OF RT WITHOUT BOOST	25.421
DURATION FROM SURGERY TO START OF RT	201.642
TIME TO POST RADIOTHERAPY FOLLOW UP	390.568

Covariate Means

b. EFFECT OF ADJUVANT CHEMOTHERAPY RECEIPT ON OS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	1.125	1	.289

c. EFFECT OF HORMONAL THERAPY AGENT ON OS

0	verun computisons		
	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.222	1	.637

Overall Comparisons

The vector of trend weights is -1, 0, 1. This is the default.

d. EFFECT OF RADIOTHERAPY TECHNIOUE ON OS

Means and Medians for Survival Time

Mean ^a					M	edian		
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
RT		Std.	Lower	Upper		Std.	Lower	Upper
TECHNIQUE	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
	26.300	.000	26.300	26.300	26.300	•	•	•
3DCR	76.697	3.373	70.085	83.309	•	•	•	•
VMAT	71.569	6.279	59.262	83.877	•	•	•	•
Overall	75.063	2.902	69.375	80.752	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.007	1	.933

e. EFFECT OF RADIOTHERAPY DOSE REGIMENS ON OS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.000	1	.992

88. EFFECT OF ADJUVANT THERAPY VARIABLES ON PROGRESSION FREE SURVIVAL/RECURRENCE FREE SURVIVAL:

a. EFFECT OF TIME FROM CT SIMULATION TO START OF RADIOTHERAPY, FROM DATE OF SURGERY TO START OF RT AND DURATION OF RADIOTHERAPY ON PFS/RFS BY COX REGRESSION ANALYSIS.

							95.0%	CI for
							Exp	o (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
DURATION OF	.009	.037	.060	1	.807	1.009	.939	1.084
RT WITHOUT								
BOOST								
DURATION	008	.003	4.768	1	.029	.992	.986	.999
FROM SURGERY								
TO START OF RT								

Variables in the Equation

Covariate Means

Mean DURATION OF RT WITHOUT BOOST 25.354 DURATION FROM SURGERY TO START OF RT 201.115 Survival Function at mean of covariates 1.0 0.8 Cum Survival 0.6 0.4 0.2 0.0 10.00 20.00 50.00 30.00 40.00 60.00 .00 PFS IN MONTHS

b. EFFECT OF ADJUVANT CHEMOTHERAPY RECEIPT ON PFS/RFS

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.530	1	.467

The vector of trend weights is -1, 0, 1. This is the default.

c. EFFECT OF HORMONAL THERAPY AGENT ON PFS/RFS

Means and Medians for Survival Time

Mean ^a					Me	edian		
			95% Coi	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
HORMONAL		Std.	Lower	Upper		Std.	Lower	Upper
AGENT	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	50.487	3.123	44.366	56.608	•			
1.00	56.865	9.389	38.463	75.267	58.000	18.679	21.389	94.611
2.00	72.189	8.591	55.350	89.028	•	•	•	•
Overall	63.420	6.904	49.888	76.951	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.002	1	.969

The vector of trend weights is -1, 0, 1. This is the default.

d. EFFECT OF RADIOTHERAPY TECHNIQUE ON PFS/RFS

Means and Medians for Survival Time									
Mean ^a					Median				
			95% C	onfidence			95% Co	nfidence	
			Int	terval			Inte	rval	
RT		Std.	Lower	Upper		Std.	Lower	Upper	
TECHNIQUE	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound	
3DCR	63.485	8.513	46.801	80.170	58.000	18.383	21.969	94.031	
VMAT	74.921	5.837	63.481	86.361					
Overall	67.381	6.693	54.262	80.500					
Overall Comparisons									
				Chi-Square		df	S	ig.	
Log Rank (Ma	ntel-Cox)				.027		1	.870	

e. EFFECT OF RADIOTHERAPY DOSE REGIMENS ON PFS/RFS

Overall Comparisons								
	Chi-Square	df	Sig.					
Log Rank (Mantel-Cox)	.221	1	.638					

89. EFFECT OF ADJUVANT THERAPY VARIABLES ON DISEASE FREE SURVIVAL:

a. <u>EFFECT OF TIME FROM FROM DATE OF SURGERY TO</u> <u>START OF RT AND DURATION OF RADIOTHERAPY ON DFS</u> <u>BY COX REGRESSION ANALYSIS.</u>

							95.0%	CI for
							Exp	o (B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
DURATION OF	.016	.031	.291	1	.590	1.017	.958	1.079
RT WITHOUT								
BOOST								
DURATION	003	.002	1.265	1	.261	.997	.993	1.002
FROM SURGERY								
TO START OF RT								

Variables in the Equation

Covariate Means

	Mean
DURATION OF RT WITHOUT BOOST	25.421
DURATION FROM SURGERY TO START OF RT	201.642

b. EFFECT OF ADJUVANT CHEMOTHERAPY RECEIPT ON DFS

Means and Medians for Survival Time

	Mean ^a					M	edian	
			95% Confidence				95% Co	nfidence
IS ADJ			Inte	rval			Inte	erval
CHEMO		Std.	Lower	Upper		Std.	Lower	Upper
GIVEN	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
NO	35.701	2.688	30.433	40.968			•	
YES	43.469	1.299	40.923	46.015				•
Overall	42.206	1.276	39.705	44.706			•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	2.073	1	.150

The vector of trend weights is -1, 1. This is the default.

c. EFFECT OF HORMONAL THERAPY AGENT ON DFS

Means and Medians for Survival Time

Mean ^a				Μ	edian			
			95% Co	nfidence			95% Co	nfidence
			Inte	rval			Inte	rval
HORMONAL		Std.	Lower	Upper		Std.	Lower	Upper
AGENT	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
.00	38.362	2.421	33.617	43.108				
1.00	35.362	3.441	28.617	42.107	•			
2.00	32.254	3.931	24.548	39.959				
Overall	37.046	2.057	33.014	41.077				•
			<u> </u>	~ •				

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.536	1	.464

d. EFFECT OF RADIOTHERAPY TECHNIQUE ON DFS

Means and Me	edians for	Survival	Time
--------------	------------	----------	------

Mean ^a					M	edian		
			95% Confidence				95% Co	nfidence
			Interval				Inte	rval
RT		Std.	Lower	Upper		Std.	Lower	Upper
TECHNIQUE	Estimate	Error	Bound	Bound	Estimate	Error	Bound	Bound
3DCR	41.960	1.448	39.122	44.797	•	•		•
VMAT	40.745	2.546	35.756	45.734	•	•	•	·
Overall	42.206	1.276	39.705	44.706	•	•	•	•

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	.102	1	.750

e. EFFECT OF RADIOTHERAPY DOSE REGIMENS ON DFS

Overall Comparisons							
	Chi-Square	df	Sig.				
Log Rank (Mantel-Cox)	.396	1	.529				

90. <u>CORRELATION BETWEEN RADIATION DOSES TO HEART,LEFT</u> <u>CORONARY ARTERY, LEFT CIRCUMFLEX ARTERY, LEFT ANTERIOR</u> <u>DESCENDING ARTERY WITH MARKERS OF SUBCLINICAL</u> <u>CARDIOTOXICITY-MPI, LVEF, TWPTE, NT-PROBNP</u>

				Ν								
				Т								
				Р				HE				
				R				AR			L	L
			LAD	0	EJECT			Т	LCA	LCX	А	А
			MEAN	В	ION			Mea	MEAN	MEAN	D	D
			DOSE(Ν	FRAC	Μ	TWPT	n	DOSE(DOSE(V2	V
			cGY)	Р	TION	PI	E(ms)	dose	cGY)	cGY)	5	45
Spear	LAD	Correl	1.000	.2	166	-	.233	.785	.858**	.839**	.90	.2
man's	MEAN	ation		03		.1		**			2^{**}	74
rho	DOSE(Coeffi				25						
	cGY)	cient										
		Sig.		.2	.373	.4	.243	.000	.000	.000	.00	.1
		(2-		92		94					0	23
		tailed)										
		N	33	29	31	32	27	33	33	33	33	33
	NT	Correl	.203	1.	132	-	.300	.267	.035	.026	.32	.2
	PRO	ation		00		.0					7	64
	BNP	Coeffi		0		28						
		cient										
		Sig.	.292		.502	.8	.137	.162	.857	.894	.08	.1
		(2-				84					4	67
		tailed)										
		N	29	30	28	29	26	29	29	29	29	29
	EJECT	Correl	166	-	1.000	-	330	-	212	121	-	.0
	ION	ation		.1		.3		.062			.20	45
	FRAC	Coeffi		32		07					0	
	TION	cient										

	Sig.	.373	.5		.0	.093	.742	.253	.516	.28	.8
	(2-		02		88					1	11
	tailed)										
	N	31	28	32	32	27	31	31	31	31	31
MPI	Correl	125	-	307	1.	.174	-	120	145	-	-
	ation		.0		00		.243			.13	.2
	Coeffi		28		0					2	60
	cient										
	Sig.	.494	.8	.088	•	.375	.180	.514	.428	.47	.1
	(2-		84							3	51
	tailed)										
	N	32	29	32	33	28	32	32	32	32	32
TWPT	Correl	.233	.3	330	.1	1.000	.201	.289	.264	.23	.1
E(ms)	ation		00		74					0	80
	Coeffi										
	cient										
	Sig.	.243	.1	.093	.3		.316	.144	.184	.24	.3
	(2-		37		75					8	68
	tailed)										
	N	27	26	27	28	28	27	27	27	27	27
HEAR	Correl	.785**	.2	062	-	.201	1.00	.789**	.785**	.73	.2
Т	ation		67		.2		0			0^{**}	94
Mean	Coeffi				43						
dose	cient										
	Sig.	.000	.1	.742	.1	.316	•	.000	.000	.00	.0
	(2-		62		80					0	97
	tailed)										
	N	33	29	31	32	27	33	33	33	33	33
LCA	Correl	.858**	.0	212	-	.289	.789	1.000	.940**	.73	.1
MEAN	ation		35		.1		**			7**	68
DOSE(Coeffi				20						
cGY)	cient										

	Sig.	.000	.8	.253	.5	.144	.000		.000	.00	.3
	(2-		57		14					0	51
	tailed)										
	N	33	29	31	32	27	33	33	33	33	33
LCX	Correl	.839**	.0	121	-	.264	.785	.940**	1.000	.70	.1
MEAN	ation		26		.1		**			8**	90
DOSE(Coeffi				45						
cGY)	cient										
	Sig.	.000	.8	.516	.4	.184	.000	.000		.00	.2
	(2-		94		28					0	89
	tailed)										
	N	33	29	31	32	27	33	33	33	33	33
LAD	Correl	.902**	.3	200	-	.230	.730	.737**	.708**	1.0	.2
V25	ation		27		.1		**			00	88
	Coeffi				32						
	cient										
	Sig.	.000	.0	.281	.4	.248	.000	.000	.000	•	.1
	(2-		84		73						04
	tailed)										
	N	33	29	31	32	27	33	33	33	33	33
LAD	Correl	.274	.2	.045	-	.180	.294	.168	.190	.28	1.
V45	ation		64		.2					8	00
	Coeffi				60						0
	cient										
	Sig.	.123	.1	.811	.1	.368	.097	.351	.289	.10	•
	(2-		67		51					4	
	tailed)										
	Ν	33	29	31	32	27	33	33	33	33	33

**. Correlation is significant at the 0.01 level (2-tailed).

91. <u>OUALITATIVE ANALYSIS OF THE CAUSES AND FACTORS</u> <u>RESPONSIBLE FOR DEATH</u>

SERIAL	REPORTED	PROBABLE REASON FOR EARLY DEATH					
	CAUSE OF						
	DEATH						
1	Died due to	Left sided cancer (Luminal) with positive margins and					
	recurrence/metastasis	nodes positive (20) with no pCR and presence of DCIS.					
2	Non cancer related	Left sided cancer, Advanced stage(3B), poorly					
		differentiated histology, TNBC, Absent pCR, Presence of					
		DCIS					
3	Died due to brain	Left sided cancer, Obese, Advanced Stage (3B), Node					
	metastasis	positivity (4), No pCR,					
4	Died due to	Left sided cancer, Advanced stage(T4B), Did not follow					
	metastasis	up for long time. Did not receive Herceptin nor get					
		treatment for metastasis.					
5	Died due to lung	TNBC, Advanced stage ypT4bN1, No pCR					
	metastasis						
6	Non cancer related	Young age (35), pre-menopausal, History of Ca BM					
		(received Sx +RT in 2016), Stage 3B(pT4bN2), No pCR,					
		DCIS present.					
7	Died due to lung /	Age <50, Left sided, Obese, pre-menopausal, Advanced					
	liver metastasis	Stage(cT4bN1), No pCR, DCIS present.					
8	Died due to pleural	Age<50, Obese, Advanced Stage (3A), Metaplastic					
	metastasis	carcinoma, Both local and distant recurrence.					
9	Non cancer related	Advanced Age (68 years), Obese, Smoker, Node positive					
		(1), Margin positive, DCIS positive, No pCR.					
10	Died due to liver	Age<50 (42 years), Left sided, Premenopausal, Stage					
	metastasis	3(ypT2N2B), No pCR					
11	Non cancer related	Age<50 (42 years), Left sided, Pre-menopausal,					
		Advanced stage(pT4bN1), DCIS positive.					
12	Non cancer related	Advanced age (83), Left sided, Node positive (16),					
		Advanced stage(pT2N2a)					

13	Non cancer related	Age<50 (45), Obesity, Pre-menopausal, Node positive.
		Margin involved, DCIS present.
14	Non cancer related	Age<50(48), Obesity, Node positivity
15	Non cancer related	Advanced age (72 years), Obesity, Left sided,
		Comorbidity-CAD, DM.

DISCUSSION

I. EPIDEMIOLOGICAL FACTORS

1. AGE-WISE DISTRIBUTION

The results of our trial revealed that the mean age of our Breast cancer population was 52 years with a majority of 62% patients between 40-60 years which is similar to that seen in Indian and International data.(3)[40-50 years in Indian data and 60-70 years being the international mean age]. Thus, our study also confirms that breast cancers in Indian women happens a decade earlier and thus screening for them from the age of 30 years may be required, in an age group when dense breasts pose difficulty to use mammograms.

2. <u>GENDER-WISE DISTRIBUTION</u>

Our study revealed that 0.9% were male and 99.1% were female which was similar to the distribution seen in Indian (1.03%) and western data(0.91%)(21,22). This is a low incidence and sporadic and hence has no screening implications.

3. GEOGRAPHIC DISTRIBUTION

Most of our patients hailed from Jodhpur as expected (77%) with a majority of others from the neighboring districts of Jalore, Nagore and Pali among others. The Institute has been created to cater to these areas where there are no other multispecialty health services available.

4. <u>RELIGION WISE DISTRIBUTION</u>

2.7% of our patients were Muslims and 97.3% of our patients were Hindus which was a ratio lower than seen in previous Indian studies which reported around 7.7% incidence in the Muslim population.(23)

5. ANTHROPROMETRIC PARAMETERS

The mean height of the patients enrolled in our study was 155 cm which was similar to that reported in other Indian studies which show the distribution of maximum number of cases between 150-155cm. The mean weight of patients in our study was 65 kg with maximum distribution between 60-6 kg which was higher compared to previous studies which showed maximum distribution between 50-60kg. BMI of 111 patients were studied, ranging from a minimum of 15.04 kg/m2 to a maximum of 45.61 kg/m2 with a mean and median BMI of

27.05 kg/m2 and 26.7 kg/m2 respectively out of which 61.8% Patients were Obese, 12.73% were overweight which was higher compared to the previous studies which showed a lesser overweight population ranging from 18-23 kg/m2 (46.1%) which might be attributed to change in geographical regions or temporal development of a more obese population with time.(32)

6. LATERALITY

Our study showed that Out of the 111 patients studied, 55(49.5%) had left sided malignancy and 56(50.5%) had right sided malignancy which is almost similar to data from other north Indian studies showing a tendency for right sided breast cancers (53.5%>45.9%)(24)

7. <u>DE NOVO VS RECURRENT CASES</u>

Out of 111 patients, 3(2.7%) were recurrences and 108(97.3%) were new cases

8. INITIAL CLINICAL PRESENTATION

93.69% of our patients presented with the complaint of breast lump followed by 2.7% patients who presented with ulceration in breast or axilla. Around 9 patients reported secondary complaints which included Bleeding from nipple, Discharge, Nipple retraction, Pain in axilla, Supraclavian lymph node ,Skin changes, Breast Ulceration, Ulcero-proliferative growth in axilla. Out of the 84 patients assessed for pain at presentation, 66 patients(78.5%) reported presence of painful lump and 18(21.5%) reported presence of painless lump which was in contrast with other Indian trials in North India which showed 77%,17% and 3% patients with painless lump, painful lump and nipple discharge respectively as the presenting complaints(96). Only 1 patient was found with incident lump on screening.

9. PARITY

Out of 111 patients, 44 patients had answered about parity. A majority of 40.91% patients had 2 children which was higher than that of other reported populations(30%).(31)Out of 110 patients who gave their menstrual information during the study, 56.4% were post menopausal, 34.26% of patients were pre-menopausal and 9.26% were peri-menopausal. Which was also similar to other studies which showed a predilection for breast cancer in post menopausal females over pre menopausal ones.(32)

10. ADDICTION HISTORY AND COMORBIDITY HISTORY

Only 1.94% patients gave a history of tobacco chewing and <1% were smokers and none gave history of alcohol use which is in contrast to the data from Global burden of disease which showed alcohol as a major risk factor. The most common comorbidity associated with our patients were Hypertension(18.2%) followed by Diabetes mellitus(12.6%) , then hypothyroidism(5.5%) and Bronchial asthma(2.3%). Another similar trial from North west India by Ankit Rai et al reported Hypertension(21.8%) as the most common comorbidity associated with Breast cancer in India followed by Chronic Obstructive Pulmonary disease(19.9%) and then Diabetes mellitus(16.7%). Presentation Delay (Months) was shown with a mean of 7.98 ± 8.68 and median of 5.00 (4.00-8.00). (96) There is a hypothesis linking metabolic disease as diabetes and obesity with cancers.

PRE-SURGICAL TREATMENT CONSIDERATIONS

11. STAGE ADJUSTED INCIDENCE OF BREAST CANCER

Out of the 91 patients, a majority of 32.97% patients were Stage 2B followed by 31.87% from stage 2A and the minimum from stage 3C (1.10%). Considering only stages, stage 2 had the highest representation with nearly 64% cases followed by stage 3 with nearly 42%. Other Indian data show a higher representation from Stage 3(42%) followed by those in Stage 2(32.7%).(20)

12. <u>NEOADJUVANT CHEMOTHERAPY</u>

Out of the 111 patients, 64 did not receive NACT. 46 patients(41%) received NACT which is similar to data from other high volume centres in India(41.7%).(20)Most common regimen received was TEC(22.52%) followed by AC regimen(4.5%). Only 34% patients received complete Neoadjuvant chemotherapy. No direct comparison of TEC/FEC with AC-T in a randomised setting were found. The use of triple regimen TEC was a part of the Institute protocol which gradually shifted to AC followed by Taxol based protocol for most patients.

13. TYPE OF SURGERY DONE

Out of the 110 patients whose records about type of surgery were available, a majority of 75.45% underwent Modified Radical Mastectomy followed by 20% who underwent breast Conservation Surgery. Other Indian trials show a higher percentage of patients who have undergone BCS with around 28.2% of cases.(20)

14. ADEOUACY OF NODAL DISSECTION

With many studies showing that removal of greater than 10 axillary LN's resulted in a more favorable survival profile, we studied for adequacy of nodal dissection among our patients.(51) Out of the 108 patients, 85.19% patients had underwent adequate dissection while 14.81% patient had inadequate dissection which was similar to other prospective trials which show around 81.3% patients who had adequate axillary dissection done(97). The node positivity data of 108 patients were collected, out of which maximum and minimum node positivity were 75 and 0 respectively with a mean of 3.56 nodes positive.

II. HISTOPATHOLOGICAL FACTORS 15. POST OPERATIVE HISTOPATHOLOGY

As per our study invasive ductal carcinoma was the most common subtype noted, covering 39.64% cases followed by 36.04% cases represented by just Invasive breast cancer, NOS. Other similar studies from AIIMS Delhi, report a higher Invasive ductal carcinoma incidence of 96%. We also have minimal number of other histology reported such as IBC, Ductal + Lobar histology, Colloid Carcinoma, IBC with apocrine differentiation, IBC with sebaceous differentiation, IBC with signet cell carcinoma, Metaplastic carcinoma, Invasive Papillary carcinoma, Mucinous carcinoma.(20)

16. MODIFIED BLOOM RICHARDSON GRADE

Out of the 64 patients with reported Modified Bloom Richardson Grade, the majority had a grade of 2(54.69%) followed 39.06% patients with a grade of 3. Only 6.25% patients had a grade of 1.(66) Rangarajan et al in his overview of trend of breast cancer in India showed that socioeconomic trend was a factor deciding grade of tumors presenting at a centre with a majority of 80% patients presenting with Grade 3 disease in large referral centres and an equal distribution between grade 2 and 3 seen in private hospitals.(98)

17. MILLER-PAYNE GRADING

Out of the 19 patients with reported Miller Payne Grading, 31.58% had grade 5 followed by 21.05% had grade 4. The other 3 grades had equal shares among the rest.(67)

18. MARGIN STATUS

Out of the 107 patients with margin status on record, 86.92% had free margins while 13.08% patients had involved margins which was mostly deep margin in MRM and operated outside

the Institute. The involved margin percentage is comparatively higher compared to other studies and meta-analysis which show around 9.4% patients with an involved or inked margin.(52). Only 3 out of these 14 margin positive patients died with 1 dying due to cancer and 2 from non-cancer related causes.

19. <u>LYMPHOVASCULAR SPACE INFILTRATION STATUS(LVSI)</u>, <u>PERINEURAL INVASION</u>.

Out of the 102 patients whose LVSI records were available, a majority of 52.94% had LVSI present and 46.08% had absent LVSI and 0.98% had an indeterminate status. Out of the 101 patients whose PNI records were available, a majority of 74.26% had PNI present and the rest had PNI absent. Incidence of PNI alone, LVSI alone, both PNI & LVSI was seen as 1.49%, 11.2%, 3% in another study from India.(99)Another large trial by Emre et al showed 27.3% incidence of LVSI and 7.6% incidence of PNI in breast cancer patients(54). This points towards a higher percentage of patients with positive LVI in our population pointing towards a possibly worse prognosis. The higher rates of LVI and PNI in this part of the country requires tumour biological studies for further interpretation and implementation in practice.

20. SUBTYPE OF BREAST CANCER

Out of the 111 patients assessed, 71.17% of patients were of Luminal subtype, 18.02% patients were of TNBC subtype, 9.01% patients were of Her-2 enriched subtype. Another study from North west India showed 57.5%, 44.1%, and 26.6% of people had tested positive for the ER, PR, and HER2neu receptors, respectively. Luminal A subtype was the most prevalent molecular subtype (41.7%), followed by triple negative subtype (30.8%). There were 15% and 12.5%, respectively, of Luminal B and HER2neu overexpressing kinds. (100)Another similar trial from AIIMS Delhi reported a total of 58% of cases tested positive for ER, PR, or both, while only 30.89% of patients had HER2/neu positive results. In 29.88% of cases, triple negativity was discovered.(20) We also found that our patients with TNBC showed a lower age wise distribution(with mean age of 48.8) as seen in other similar trials which might also be a reason for the poorer prognosis associated with the same. Patients of Luminal subtype showed a peak in the 4th decade while TNBC showed a broader distribution starting the earliest and extending till menopausal age group while Her 2 enriched status showed incidence mainly in the younger age group. Similarly we found that TNBC subtype was associated with a higher rate of pathological CR which indirectly points towards its intrinsic chemosensitivity. 4/5 patients of TNBC treated with NACT in our trial showed pCR

compared to 1/34 in luminal type(57). This also reaffirms the fact that India also apparently has a higher population of TNBC compared to western population(30 % vs 12-15%)(60)

21. PRESENCE OR ABSENCE OF LCIS/DCIS WITH INVASIVE CARCINOMA

Out of the 111 patients whose records were available, 39.64% were positive for DCIS/LCIS which is comparatively higher to other contemporary data, one of which reported 25.4%.(61) Out of the 44 patients whose information on focality was available; 68% had Unifocal DCIS while 32% had multifocal DCIS.

III. ADJUVANT TREATMENT FACTORS 22. ADJUVANT CHEMOTHERAPY

Out of the 109 patients whose data about adjuvant chemotherapy were retrieved, 75.2% had received adjuvant chemotherapy while the rest had received NACT or hormonal therapy which is higher than the rates seen in other similar studies from India(59%)(101). This can be attributed to the fact that there were also many cases which came after initial treatment from other primary centers i.e. inadvertent surgical lump removal or mastectomy without neoadjuvant therapy.

23. ADJUVANT HORMONAL THERAPY

Out of the 76 patients, 84% had received hormonal therapy while records of 16% were not available. (102)Out of the 47 patients whose records of hormonal therapy were available, 45% received Anastrozole, 34% received Tamoxifen and 21% received Letrozole. 3 patients later changed to a different regimen due to intolerance or change of menstrual status. The use of hormonal agents has always been a point of contention with physicians' choice predominating as there has not been any conclusive evidence showing superiority of Anastrozole or letrozole over one another. A study in South India demonstrated 35% prevalence of use of Letrozole followed by 27% patients on Tamoxifen when assessed regardless of Menopausal status.(101)

24. DURATION FROM SURGERY TO START OF RT

The study revealed that the mean time from Surgery to start of Radiation was 28 weeks and ranged from 3.7 weeks to 209 weeks. There were many reasons for the delay in RT including patient being lost to follow up, the impact of the COVID pandemic as well as neglect from

other primary centres where the patient was sent home after surgery without counselling regarding Adjuvant therapy.

25. <u>RADIOTHERAPY TECHNIOUE AND DOSING REGIMENS</u>

82.7% of the 110 patients whose data were accrued had received RT by 3DCRT followed by 17.3 % of patients by VMAT. The lesser rates of VMAT can be attributed to logistical issues.

26. <u>RADIOTHERAPY DOSES TO CARDIAC SUBSTRUCTURES AND HEART</u> <u>IN PATIENTS WHO RECEIVED 42.56 GY/16#.</u>

According to our study, the average doses to the heart and cardiac substructures were 1255.52 cGy, 0.818 cGy, 0.017 cGy, 167.742cGy, 260.58 cGy, and 644.62 cGy for the mean LAD, LAD V25, LAD V45, mean LCX, mean LCA, and mean heart doses, respectively. Left sided cancers received significantly more dose as expected compared to right sided cancers. The DEGRO breast cancer guidelines recommended the following limits, which demonstrated that our cardiac dosages were higher than dose constraints as indicated by other guidelines. Dmean LAD (mean dose left descending artery): 10 Gy; mean heart dose: 2.5 Gy.(88)

27. RATES OF RECURRENCES

Out of the 106 patients whose response assessment details were accrued, 92.4 % were disease free ,7.6% had recurrent disease on follow up. Amongst the 18 patients with documented recurrence, 72% had distant recurrences, 22% had local recurrences and the remaining had both local as well as distant recurrence. This showed a higher rate of recurrences than other similar studies but similar to the 10-year Breast Cancer Recurrence rates which could not be corroborated well as the duration of our follow up was limited (less than 3 years).

28. SITE OF DISTANT METASTASIS?

A majority of 29% patients had Bone metastasis followed by 23% patients with Liver metastasis in our studied which is similar to a SEER meta-analysis which showed that In terms of both single and multiple metastatic locations, bone continued to be the most frequent site of breast cancer metastasis (65.1%), followed by the lung (31.4%), liver (26.0%), and brain (8.8%) metastasis.(62)

NOTE: Most of the survival analysis could not be completed due to lesser number of events(death/relapses). In those cases where survival analysis was not feasible, correlation
with Log rank test was done to find significant correlation with survival trends and qualitative analysis of probable reasons of death was collated..

29. <u>MEDIAN OVERALL SURVIVAL/DISEASE FREE SURVIVAL/</u> PROGRESSION FREE SURVIVAL/RECURRENCE FREE SURVIVAL

Out of the 111 patients with accrued data, 86% were alive at last follow up and 14% had passed away. The median duration of follow up was 40.7 months(CI=39.6-41.7 months). The mean and median Overall survival were 38.9 and 39.9 Months respectively. The mean and median progression free survival/recurrence free survival was 37.5 months and 39.1 months respectively and ranging from 85.9 to 0.37 months. the mean and median Disease-free survival was 30.5 months and 33.1 months respectively and ranging from 3.03 to 48.03 months. This shows a wide discrepancy with other national and international data being much lower in comparison mainly due to the lesser duration of follow up.(20,95)

Site wise distribution of OS, DFS and PFS/RFS showed that the lowest and highest OS, PFS/RFS and DFS were for Lower Inner quadrant and Axillary primaries respectively.

IV. PROGNOSTIC FACTORS FOR SURVIVAL OUTCOMES

30. DEMOGRAPHIC VARIABLES:

Cox regression analysis of demographic variables revealed that only religion (in favour of Hindus, Median OS-76 months vs 30 months) showed a significant correlation with Overall survival (HR=0.102, 95% CI=.016-0.638, p=0.015). Age >50, post-menopausal status, right sided breast cancer, Higher BMI, Presence of comorbidities showed a trend towards improved overall survival and progression free survival/recurrence free survival although statistically insignificant. Although significant correlation was found with Religion, this needs to be studied in a prospective setting due to the limited number of Muslim patients involved in this study. Other similar studies on impact of prognostic epidemiological variables on Breast cancer survival has shown a similar trend with Age >40(37). But a study by Tata Memorial Hospital revealed no relation with religion and prognosis. BMI has long shown to be a poor prognostic factor for breast cancer survival which came as reversed in our study which might be due to a larger ratio of censored cases.(42)Other studies also point towards the superior survival with right sided tumors.(43)

Similarly Right sided tumours, Higher BMI, Presence of comorbidities, Hindu religion showed a trend towards improved Disease free survival while Age<50 and Pre menopausal status showed improved DFS which was the reverse of the trends seen with PFS/RFS and OS, although statistically insignificant.

31. PRE SURGICAL STAGING :

There was no significant correlation between Pre surgical staging and OS and PFS/RFS and median overall survival statistics could not be completed due to censored events in our study. This is contrast to other sufficiently powered studies which demonstrate a clear correlation between stage and outcome.(46)There was a significant correlation seen with Staging and DFS.

32. ROLE OF NEOADJUVANT CHEMOTHERAPY

Our study revealed that receipt of NACT resulted in significantly lesser overall survival, DFS and PFS/RFS which might be due to this study being underpowered to test for this.(48)

33. <u>EFFECT OF NUMBER OF DISSECTED NODES, TYPE OF SURGERY AND</u> <u>NUMBER OF POSITIVE NODES</u>

Higher Number of dissected nodes and positive nodes showed a trend of increased overall survival , DFS and PFS/RFS although insignificant which is in the lines of other studies(50,51). Type of surgery also did not have a significant correlation with survival outcomes although there was a trend to worse outcomes with MRM which can be attributed to later stage at presentation or other poor prognostic features pre-empting MRM over BCS

34. BLOOM RICHARDSON GRADING

Our study showed no significant relation between Grading and survival outcomes such as OS, DFS, PFS/RFS although other trials show a significant correlation with survival.(58)

35. MARGIN STATUS, LVSI, PNI, ENE

Presence of positive margins corresponded with an trend towards decreased OS,DFS and PFS/RFS although non significant in our study. Presence of LVSI and PNI also pointed towards a trend towards worser outcomes although insignificant. This is as expected and seen in other similar studies which show Margin positivity, LVSI, PNI as prognostic for poorer outcomes(52,54)

36. PRESENCE OF DCIS/LCIS ALONG WITH INVASIVE CARCINOMA

Our study showed that presence of DCIS/LCIS with invasive carcinoma pointed to a trend to inferior OS and PFS/RFS with superior DFS although insignificant which was in contrast to some other studies showing an increased DFS survival and OS with DCIS(61)

37. POST SURGICAL STAGE

Post surgical T stage showed a significant correlation with overall survival and similar trends with DFS and PFS/RFS although non significant. N stage also showed trends towards improved survival, DFS, PFS/RFS although insignificant.

38. SUBTYPE OF BREAST CANCER

There was no significant correlation between tumour subtype and survival outcomes but there was a trend towards improved OS and PFS/RFS with Luminal subtype compared to TNBC and Her 2 neu enriched subtypes although non-significant. But other sufficiently powered studies have shown a significant correlation between the two with Luminal subtypes having superior survival and TNBC having the worst.(59)

39. ADJUVANT THERAPY

On Cox regression analysis, Duration from Surgery to start of RT showed a significant correlation with PFS/RFS while duration of radiotherapy did not. Adjuvant chemotherapy and choice of hormonal agent did not reveal any significant correlation with OS, PFS/RFS and DFS, although recent update of the TEXT/SOFT trials reveal a DFS and OS benefit in high-risk premenopausal patients. This subgroup analysis could not be done due to limitations of our study.

While some studies show that delay in start of RT after surgery more than 8 weeks had a detrimental impact on OS but later studies showed that sequencing of chemotherapy before RT resulting in a delay in RT did not result in worse survival outcomes.(71–73)

Choice of Radiotherapy technique or regimen did not reveal any significant correlation with survival outcomes although patients treated with 3DCRT showed a trend towards superior OS, DFS though non- significant which can also be attributed to lower number of patients in the VMAT arm.

40. CARDIAC PARAMETERS FOR PATIENTS WHO RECEIVED 42.56GY/16#

Assessment of correlation between subclinical cardiac toxicity assessment parameters and Dose to Left Anterior descending artery, Left circumflex artery, Left Coronary artery was done. Non parametric test of Spearmann was used to test for correlation. The results revealed no significant correlation between the markers of subclinical cardiotoxicity and doses to cardiac substructures as well as heart. However, there was significant correlation between Mean heart dose and Mean Left Anterior descending artery dose, Mean Left circumflex artery dose, Mean Left Coronary artery dose and Left Anterior descending artery V25.(P=.000). Moreover the doses received by heart and cardiac structures are as expected more for left sided cancers compared to right in the range of 2299.48 cGy and 146.31 cGy for Mean Left Anterior Descending artery dose to 797.07 cGy and 243.99 cGy for Mean heart dose and 413.96 cGy and 97.62 cGy for Mean Left coronary artey dose. However other sufficiently powered studies have demonstrated the role of Myocardial performance index and Left ventricular ejection fraction in predicting subclinical cardiotoxicity.(92) The strong correlation between the mean cardiac doses and various doses to LAD can be further studied as it may show that the simpler segmentation and constraints on heart can continue to be the standard radiation planning procedure instead of more difficult segmentation and constraints of LAD.

CONCLUSION

The most prevalent cancer diagnosed worldwide is now female breast cancer, surpassing lung cancer in prevalence. Among Indian women, breast cancer is the most prevalent type of cancer. With the increasing cases of cancer worldwide, comes our responsibility to further dissect and understand the enigma constituting the same.

This study was aimed at assessing the clinicopathological profile and its effects on the survival outcomes of patients of Breast cancer treated with curative intent at our centre. Although the study was underpowered to test for effect of many variables on the survival outcomes due to lesser number of events and limitations of sample size, it successfully demonstrates the general trend of prognostic effects of different clinicopathological variables on outcomes as well as an epidemiological profile mirroring that of real-world data as evidenced by other similar trials.

With the advent of newer, safer modalities of treatment, the general prognosis of breast cancer in India is good. But due to lack of a standard screening and treatment guideline throughout the country, there are wide discrepancies in workup and management of patients. This in addition to the delay in presentation, prevalence of local herbal, folk remedies which are sought after by the rural populace and sometimes the Provider delay due to large patient load results in an apparently poorer prognosis for a comparatively controllable malignancy.

Our study also brings to light the high prevalence of Obesity and Comorbidities like Hypertension, Diabetes mellitus in the populace which might also have hidden associations with breast cancer risk and even prognosis, prompting further prospective research on the same as well as fleshing out well thought out mechanisms aimed at targeting awareness of lifestyle habits as well as its implications on Cancer risk and prognosis along with its effect on other the traditional Non communicable diseases such as Coronary artery disease, Stroke, etc.

Absence of proper post treatment follow up also seems to be a major factor which prevents the timely diagnosis of relapses or metastasis, which either stem from a lack of proper counselling from the care-giver or due to the lack of compliance from the patient side.

In conclusion, attempts to tackle breast cancer burden should be started at its roots from:

- Screening of young females with an emphasis on those with a family history of breast cancer or other related cancers. This should in fact start from a younger age than those reported in western guidelines due to the younger age of presentation of Indian breast cancer patients and the poorer outcome of the same.
- 2. Timely treatment with minimal Provider delay should be targeted by decreasing the burden on existing health care institutions. Either by increasing the number of health care providers or by developing new Cancer centres equipped with the latest Radiation, Systemic therapy and Surgical treatment options under government schemes which will help in both data accrual as well as ease economic burden of cancer patients.
- 3. Proper streamlined process for long term follow up of treated patients.

LIMITATIONS OF THE STUDY

The study was not sufficiently powered to test for significant differences in outcomes as a result of various demographic and pathological as well as treatment related variables. There were lesser number of events which resulted in subgroup analysis failure because of all events being censored in the groups. Being retrospective in nature, this study does not include patients treated with a homogeneous treatment regimen which accounts for a lot of confounding results.

REFERENCES

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.
- Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women: Breast cancer epidemiology. Asia-Pac J Clin Oncol. 2017 Aug;13(4):289–95.
- Bhattacharyya GS, Doval DC, Desai CJ, Chaturvedi H, Sharma S, Somashekhar S p. Overview of Breast Cancer and Implications of Overtreatment of Early-Stage Breast Cancer: An Indian Perspective. JCO Global Oncology. 2020 Nov;(6):789–98.
- Hu Z, Fan C, Oh DS, Marron J, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006 Apr 27;7(1):96.
- 5. Vinay kumar, Abul K.Abbas, Nelson Fausto, Jon C. Aster. Robbins and Cotran Pathologic basis of disease. 8th edition.
- Escala-Garcia M, Morra A, Canisius S, Chang-Claude J, Kar S, Zheng W, et al. Breast cancer risk factors and their effects on survival: a Mendelian randomisation study. BMC Medicine. 2020 Nov 17;18(1):327.
- Raina V, Bhutani M, Bedi R, Sharma A, Deo SVS, Shukla NK, et al. Clinical features and prognostic factors of early breast cancer at a major cancer center in North India. Indian Journal of Cancer. 2005 Jan 1;42(1):40.
- Gupta G, Dang R, Gupta S. Clinical presentations of carcinoma breast in rural population of North India: a prospective observational study. International Surgery Journal. 2019 Apr 29;6:1622.
- Mehrotra R, Yadav K. Breast cancer in India: Present scenario and the challenges ahead. World J Clin Oncol. 2022 Mar 24;13(3):209–18.
- Viral P, Pavithran K, Beena K, Shaji A, Vijaykumar DK. Ten-year survival outcome of breast cancer patients in India. Journal of Carcinogenesis [Internet]. 2021 [cited 2022 Oct 27];20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202444/

- Maajani K, Jalali A, Alipour S, Khodadost M, Tohidinik HR, Yazdani K. The Global and Regional Survival Rate of Women With Breast Cancer: A Systematic Review and Metaanalysis. Clinical Breast Cancer. 2019 Jun;19(3):165–77.
- Guo F, Kuo Y fang, Shih YCT, Giordano SH, Berenson AB. Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 2018;124(17):3500–9.
- 13. Bijker N, Meijnen P, Peterse JL, Bogaerts J, Hoorebeeck IV, Julien JP, et al. Breast-Conserving Treatment With or Without Radiotherapy in Ductal Carcinoma-In-Situ: Ten-Year Results of European Organisation for Research and Treatment of Cancer Randomized Phase III Trial 10853—A Study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Journal of Clinical Oncology [Internet]. 2016 Sep 21 [cited 2022 Oct 27]; Available from: https://ascopubs.org/doi/10.1200/JCO.2006.06.1366?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
- 14. S D, P M, C C, C T, R A, M C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet (London, England) [Internet]. 2011 Nov 12 [cited 2022 Oct 27];378(9804). Available from: https://pubmed.ncbi.nlm.nih.gov/22019144/
- 15. B F, S A, J B, Rg M, M D, Er F, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England journal of medicine [Internet].
 2002 Oct 17 [cited 2022 Oct 27];347(16). Available from: https://pubmed.ncbi.nlm.nih.gov/12393820/
- 16. Ja van D, Ac V, Is F, C L, Rj S, D T, et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. Journal of the National Cancer Institute [Internet]. 2000 Jul 19 [cited 2022 Oct 27];92(14). Available from: https://pubmed.ncbi.nlm.nih.gov/10904087/

- Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JG, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. The Lancet Oncology. 2010 Feb;11(2):165–73.
- Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021 Apr 5;
- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019 Apr 15;144(8):1941–53.
- Gogia A, Deo S, Sharma D, Mathur S. Breast cancer: The Indian scenario. JCO. 2020 May 20;38(15_suppl):e12567–e12567.
- 21. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 2018;68(1):7–30.
- 22. Sundriyal D, Kotwal S, Dawar R, Parthasarathy KM. Male Breast Cancer in India: Series from a Cancer Research Centre. Indian J Surg Oncol. 2015 Dec;6(4):384–6.
- 23. Saxena S, Rekhi B, Bansal A, Bagga A, Chintamani, Murthy NS. Clinico-morphological patterns of breast cancer including family history in a New Delhi hospital, India-A crosssectional study. World J Surg Oncol. 2005 Oct 13;3:67.
- Kakkar V, Sharma R, Singh K, Randhawa A. Trends of breast tumour laterality and agewise incidence rates in North Indian population. International Surgery Journal. 2020 Jul 23;7(8):2523–6.
- 25. Makhoul I. 24 Therapeutic Strategies for Breast Cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ, editors. The Breast (Fifth Edition) [Internet]. Elsevier;
 2018. p. 315-330.e7. Available from: https://www.sciencedirect.com/science/article/pii/B9780323359559000246
- 26. Han W, Kang SY, Korean Breast Cancer Society. Relationship between age at diagnosis and outcome of premenopausal breast cancer: age less than 35 years is a reasonable cutoff for defining young age-onset breast cancer. Breast Cancer Res Treat. 2010 Jan;119(1):193–200.

- 27. Bharat A, Aft RL, Gao F, Margenthaler JA. Patient and tumor characteristics associated with increased mortality in young women (< or =40 years) with breast cancer. J Surg Oncol. 2009 Sep 1;100(3):248–51.
- Brewer HR, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Family history and risk of breast cancer: an analysis accounting for family structure. Breast Cancer Res Treat. 2017 Aug;165(1):193–200.
- 29. Çelik A, Acar M, Erkul CM, Gunduz EG and M, Çelik A, Acar M, et al. Relationship of Breast Cancer with Ovarian Cancer [Internet]. A Concise Review of Molecular Pathology of Breast Cancer. IntechOpen; 2015 [cited 2022 Nov 25]. Available from: https://www.intechopen.com/state.item.id
- Husby A, Wohlfahrt J, Øyen N, Melbye M. Pregnancy duration and breast cancer risk. Nat Commun. 2018 Oct 23;9:4255.
- Ursin G, Bernstein L, Lord SJ, Karim R, Deapen D, Press MF, et al. Reproductive factors and subtypes of breast cancer defined by hormone receptor and histology. Br J Cancer. 2005 Aug 8;93(3):364–71.
- 32. Singh M, Jangra B. Association between body mass index and risk of breast cancer among females of north India. South Asian J Cancer. 2013;2(3):121–5.
- 33. McCarthy AM, Friebel-Klingner T, Ehsan S, He W, Welch M, Chen J, et al. Relationship of established risk factors with breast cancer subtypes. Cancer Medicine. 2021;10(18):6456–67.
- 34. Anothaisintawee T, Wiratkapun C, Lerdsitthichai P, Kasamesup V, Wongwaisayawan S, Srinakarin J, et al. Risk Factors of Breast Cancer: A Systematic Review and Meta-Analysis. Asia Pac J Public Health. 2013 Sep;25(5):368–87.
- 35. Dinshaw KA, Budrukkar AN, Chinoy RF, Sarin R, Badwe R, Hawaldar R, et al. Profile of prognostic factors in 1022 Indian women with early-stage breast cancer treated with breast-conserving therapy. International Journal of Radiation Oncology*Biology*Physics. 2005 Nov;63(4):1132–41.

- 36. Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol. 2008 Jul 10;26(20):3324–30.
- Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. Breast cancer before age 40 years. Semin Oncol. 2009 Jun;36(3):237–49.
- 38. Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, Saghir NSE. Epidemiology and prognosis of breast cancer in young women. Journal of Thoracic Disease [Internet]. 2013 Jun [cited 2022 Dec 25];5(Suppl 1). Available from: https://jtd.amegroups.com/article/view/1215
- Badwe RA, Gangawal S, Mittra I, Desai PB. Clinico-pathological features and prognosis of breast cancer in different religious communities in India. Indian J Cancer. 1990 Dec;27(4):220–8.
- 40. Kleinfeld G, Haagensen CD, Cooley E. Age and Menstrual Status as Prognostic Factors in Carcinoma of the Breast. Ann Surg. 1963 Apr;157(4):600–5.
- 41. Cheraghi Z, Poorolajal J, Hashem T, Esmailnasab N, Irani AD. Effect of Body Mass Index on Breast Cancer during Premenopausal and Postmenopausal Periods: A Meta-Analysis. PLOS ONE. 2012 Dec 7;7(12):e51446.
- 42. Ryu SY, Kim CB, Nam CM, Park JK, Kim KS, Park J, et al. Is Body Mass Index the Prognostic Factor in Breast Cancer?: A Meta-Analysis. J Korean Med Sci. 2009 Apr 24;16(5):610–4.
- 43. Amer MH. Genetic factors and breast cancer laterality. Cancer Management and Research. 2014 Mar 4;6:191–203.
- 44. Eldin EIZ. 27P Breast cancer primary site and laterality as predictive factors of prognosis: SEER based analysis for survival. Annals of Oncology. 2020 Nov;31:S1251.
- 45. Sathwara J, Bobdey S, B G. Breast cancer survival studies in India: a review. International Journal of Research in Medical Sciences. 2017 Jan 4;4(8):3102–8.

- 46. Sant M, Allemani C, Capocaccia R, Hakulinen T, Aareleid T, Coebergh JW, et al. Stage at diagnosis is a key explanation of differences in breast cancer survival across Europe. Int J Cancer. 2003 Sep 1;106(3):416–22.
- 47. Chen Y, Shi XE, Tian JH, Yang XJ, Wang YF, Yang KH. Survival benefit of neoadjuvant chemotherapy for resectable breast cancer. Medicine (Baltimore). 2018 May 18;97(20):e10634.
- 48. Pathak M, Deo SV, Dwivedi SN, Sreenivas V, Thakur B, Julka PK, et al. Role of neoadjuvant chemotherapy in breast cancer patients: Systematic review and metaanalysis. Indian Journal of Medical and Paediatric Oncology. 2019 Jan;40(01):48–62.
- 49. Xia LY, Hu QL, Zhang J, Xu WY, Li XS. Survival outcomes of neoadjuvant versus adjuvant chemotherapy in triple-negative breast cancer: a meta-analysis of 36,480 cases. World Journal of Surgical Oncology. 2020 Jun 15;18(1):129.
- 50. Nair N, Shet T, Parmar V, Havaldar R, Gupta S, Budrukkar A, et al. Breast cancer in a tertiary cancer center in India An audit, with outcome analysis. Indian J Cancer. 2018;55(1):16–22.
- 51. Joslyn SA, Konety BR. Effect of axillary lymphadenectomy on breast carcinoma survival. Breast Cancer Res Treat. 2005 May;91(1):11–8.
- 52. Bundred JR, Michael S, Stuart B, Cutress RI, Beckmann K, Holleczek B, et al. Margin status and survival outcomes after breast cancer conservation surgery: prospectively registered systematic review and meta-analysis. BMJ. 2022 Sep 21;378:e070346.
- 53. Zhang H, Zhang N, Moran MS, Li Y, Liang Y, Su P, et al. Special subtypes with favorable prognosis in breast cancer: A registry-based cohort study and network metaanalysis. Cancer Treatment Reviews. 2020 Dec 1;91:102108.
- 54. Yekedüz E, Dizdar Ö, Kertmen N, Aksoy S. Comparison of Clinical and Pathological Factors Affecting Early and Late Recurrences in Patients with Operable Breast Cancer. J Clin Med. 2022 Apr 22;11(9):2332.

- 55. Narayan P, Flynn J, Zhang Z, Gillespie EF, Mueller B, Xu AJ, et al. Perineural invasion as a risk factor for locoregional recurrence of invasive breast cancer. Sci Rep. 2021 Jun 17;11(1):12781.
- 56. Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E. Metaanalysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. European Journal of Cancer. 2012 Dec 1;48(18):3342–54.
- 57. Choudhary P, Gogia A, Deo SVS, Sharma D, Mathur SR, Batra A, et al. Correlation of pathological complete response with outcomes in locally advanced breast cancer treated with neoadjuvant chemotherapy: An ambispective study. Cancer Research, Statistics, and Treatment. 2021 Dec;4(4):611.
- Bloom HJG, Richardson WW. Histological Grading and Prognosis in Breast Cancer: A Study of 1409 Cases of which 359 have been Followed for 15 Years. Br J Cancer. 1957 Sep;11(3):359–77.
- 59. Fallahpour S, Navaneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017 Sep 25;5(3):E734–9.
- 60. Sandhu GS, Erqou S, Patterson H, Mathew A. Prevalence of Triple-Negative Breast Cancer in India: Systematic Review and Meta-Analysis. JGO. 2016 Dec;2(6):412–21.
- 61. Chagpar AB, McMasters KM, Sahoo S, Edwards MJ. Does ductal carcinoma in situ accompanying invasive carcinoma affect prognosis? Surgery. 2009 Oct;146(4):561–7; discussion 567-568.
- 62. Chen MT, Sun HF, Zhao Y, Fu WY, Yang LP, Gao SP, et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci Rep. 2017 Aug 23;7(1):1–8.
- 63. Patanaphan V, Salazar OM, Risco R. Breast cancer: metastatic patterns and their prognosis. South Med J. 1988 Sep;81(9):1109–12.

- 64. Cain H, Macpherson IR, Beresford M, Pinder SE, Pong J, Dixon JM. Neoadjuvant Therapy in Early Breast Cancer: Treatment Considerations and Common Debates in Practice. Clinical Oncology. 2017 Oct;29(10):642–52.
- 65. Keelan S, Flanagan M, Hill ADK. Evolving Trends in Surgical Management of Breast Cancer: An Analysis of 30 Years of Practice Changing Papers. Front Oncol. 2021 Aug 4;11:622621.
- 66. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403-410. Histopathology. 2002 Sep;41(3A):151–2, discussion 152-153.
- 67. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. The Breast. 2003 Oct 1;12(5):320–7.
- Shaikh AJ, Kumar S, Raza S, Mehboob M, Ishtiaq O. Adjuvant Hormonal Therapy in Postmenopausal Women with Breast Cancer: Physician's Choices. Int J Breast Cancer. 2012;2012:849592.
- Francis PA, Pagani O, Fleming GF, Walley BA, Colleoni M, Láng I, et al. Tailoring Adjuvant Endocrine Therapy for Premenopausal Breast Cancer. New England Journal of Medicine. 2018 Jul 12;379(2):122–37.
- 70. Fu F, Yu L, Zeng B, Chen M, Guo W, Chen L, et al. Association of Adjuvant Hormone Therapy Timing With Overall Survival Among Patients With Hormone Receptor– Positive Human Epidermal Growth Factor Receptor-2–Negative Early Breast Cancer Without Chemotherapy. JAMA Network Open. 2022 Feb 15;5(2):e2145934.
- Huang J, Barbera L, Brouwers M, Browman G, Mackillop WJ. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol. 2003 Feb 1;21(3):555–63.
- 72. Buchholz TA, Hunt KK, Amosson CM, Tucker SL, Strom EA, McNeese MD, et al. Sequencing of chemotherapy and radiation in lymph node-negative breast cancer. Cancer J Sci Am. 1999 May 1;5(3):159–64.

- 73. Sartor CI, Peterson BL, Woolf S, FitzGerald TJ, Laurie F, Turrisi AJ, et al. Effect of Addition of Adjuvant Paclitaxel on Radiotherapy Delivery and Locoregional Control of Node-Positive Breast Cancer: Cancer and Leukemia Group B 9344. JCO. 2005 Jan;23(1):30–40.
- 74. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Darby S, McGale P, Correa C, Taylor C, Arriagada R, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011 Nov 12;378(9804):1707–16.
- 75. Bartelink H, Horiot JC, Poortmans P, Struikmans H, Van den Bogaert W, Barillot I, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001 Nov 8;345(19):1378–87.
- 76. Yarnold J, Ashton A, Bliss J, Homewood J, Harper C, Hanson J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005 Apr;75(1):9–17.
- 77. Whelan T, MacKenzie R, Julian J, Levine M, Shelley W, Grimard L, et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. J Natl Cancer Inst. 2002 Aug 7;94(15):1143–50.
- 78. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. The Lancet Oncology. 2008 Apr;9(4):331–41.
- 79. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. The Lancet. 2008 Mar;371(9618):1098–107.
- 80. FAST Trialists group, Agrawal RK, Alhasso A, Barrett-Lee PJ, Bliss JM, Bliss P, et al. First results of the randomised UK FAST Trial of radiotherapy hypofractionation for treatment of early breast cancer (CRUKE/04/015). Radiother Oncol. 2011 Jul;100(1):93– 100.

- 81. Chua BH, Link EK, Kunkler IH, Whelan TJ, Westenberg AH, Gruber G, et al. Radiation doses and fractionation schedules in non-low-risk ductal carcinoma in situ in the breast (BIG 3-07/TROG 07.01): a randomised, factorial, multicentre, open-label, phase 3 study. Lancet. 2022 Aug 6;400(10350):431–40.
- Gupta A, Ohri N, Haffty BG. Hypofractionated radiation treatment in the management of breast cancer. Expert Rev Anticancer Ther. 2018 Aug;18(8):793–803.
- 83. Wang SL, Fang H, Song YW, Wang WH, Hu C, Liu YP, et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: a randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2019 Mar;20(3):352–60.
- 84. Das Majumdar SK, Amritt A, Dhar SS, Barik S, Beura SS, Mishra T, et al. A Dosimetric Study Comparing 3D-CRT vs. IMRT vs. VMAT in Left-Sided Breast Cancer Patients After Mastectomy at a Tertiary Care Centre in Eastern India. Cureus. 14(3):e23568.
- 85. Pedersen RN, Esen BÖ, Mellemkjær L, Christiansen P, Ejlertsen B, Lash TL, et al. The Incidence of Breast Cancer Recurrence 10-32 Years After Primary Diagnosis. JNCI: Journal of the National Cancer Institute. 2022 Mar 1;114(3):391–9.
- 86. Wennstig AK, Garmo H, Isacsson U, Gagliardi G, Rintelä N, Lagerqvist B, et al. The relationship between radiation doses to coronary arteries and location of coronary stenosis requiring intervention in breast cancer survivors. Radiation Oncology. 2019 Mar 7;14(1):40.
- 87. Jacob S, Camilleri J, Derreumaux S, Walker V, Lairez O, Lapeyre M, et al. Is mean heart dose a relevant surrogate parameter of left ventricle and coronary arteries exposure during breast cancer radiotherapy: a dosimetric evaluation based on individually-determined radiation dose (BACCARAT study). Radiat Oncol. 2019 Feb 7;14(1):29.
- 88. Piroth MD, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, et al. Heart toxicity from breast cancer radiotherapy: Current findings, assessment, and prevention. Strahlenther Onkol. 2019 Jan;195(1):1–12.

- 89. Alexandre J, Cautela J, Ederhy S, Damaj GL, Salem JE, Barlesi F, et al. Cardiovascular Toxicity Related to Cancer Treatment: A Pragmatic Approach to the American and European Cardio-Oncology Guidelines. J Am Heart Assoc. 2020 Sep 15;9(18):e018403.
- 90. Di Lisi D, Manno G, Novo G. Subclinical Cardiotoxicity: The Emerging Role of Myocardial Work and Other Imaging Techniques. Current Problems in Cardiology. 2021 Jun;46(6):100818.
- Blancas I, Martín-Pérez FJ, Garrido JM, Rodríguez-Serrano F. NT-proBNP as predictor factor of cardiotoxicity during trastuzumab treatment in breast cancer patients. The Breast. 2020 Dec 1;54:106–13.
- 92. Bennett S, Cubukcu A, Wong CW, Griffith T, Oxley C, Barker D, et al. The role of the Tei index in assessing for cardiotoxicity from anthracycline chemotherapy: a systematic review. Echo Res Pract. 2021 Apr 1;8(1):R1–11.
- 93. The role of cardiac biomarkers as predictors of trastuzumab cardiotoxicity in patients with breast cancer | Experimental oncology [Internet]. [cited 2022 Dec 24]. Available from: https://exp-oncology.com.ua/article/7571/the-role-of-cardiac-biomarkers-as-predictors-of-trastuzumab-cardiotoxicity-in-patients-with-breast-cancer
- 94. Iqbal M, Victory V, Astuti A, Febrianora M, Karwiky G, Achmad C, et al. Cardiotoxicity by Anthracycline Regimen Chemotherapy Prolonged T Peak to T End Interval. Cardiol Res. 2020 Oct;11(5):305–10.
- 95. Cocciolone V, Cannita K, Calandrella ML, Ricevuto E, Baldi PL, Sidoni T, et al. Prognostic significance of clinicopathological factors in early breast cancer: 20 years of follow-up in a single-center analysis. Oncotarget. 2017 Jun 16;8(42):72031–43.
- 96. Rai A, Sharda P, Aggarwal P, Ravi B. Study of Diagnostic Delay among Symptomatic Breast Cancer Patients in Northern India: A Mixed-Methods Analysis from a Dedicated Breast Cancer Centre. Asian Pac J Cancer Prev. 2022 Mar 1;23(3):893–904.
- 97. Abass MO, Gismalla MDA, Alsheikh AA, Elhassan MMA. Axillary Lymph Node Dissection for Breast Cancer: Efficacy and Complication in Developing Countries. J Glob Oncol. 2018 Oct 3;4:JGO.18.00080.

- 98. Rangarajan B, Shet T, Wadasadawala T, Nair NS, Sairam RM, Hingmire SS, et al. Breast cancer: An overview of published Indian data. South Asian J Cancer. 2016;5(3):86–92.
- 99. Marimuthu S, Muniyasamy P. A STUDY OF PERINEURAL AND LYMPHOVASCULAR SPACE INVASION IN INVASIVE CARCINOMA BREAST PATIENTS. PIJR. 2021 Dec 15;11–2.
- 100. Ansari M, Mittal A, Mehta J, Jain N. Molecular Subtypes of Breast Cancer According to Immunohistochemical Expression of Hormone Receptors in A Region of North West India: A Comparative Study with Other Regions in India and Around the Globe. International Archives of BioMedical and Clinical Research. 2019 Mar 21;5(1):26–30.
- 101. Vijaykumar DK, Arun S, Abraham AG, Hopman W, Robinson AG, Booth CM. Breast Cancer Care in South India: Is Practice Concordant With National Guidelines? J Glob Oncol. 2019 Jul 1;5:JGO.19.00052.
- 102. Chen SY, Tang Y, Wang SL, Song YW, Fang H, Wang JY, et al. Timing of Chemotherapy and Radiotherapy Following Breast-Conserving Surgery for Early-Stage Breast Cancer: A Retrospective Analysis. Front Oncol. 2020 Sep 23;10:571390.

ANNEXURES

<u>ANNEXURE-1</u> PROFORMA FOR DATA COLLECTION

ALL INDIA INSTITUTE OF MEDICAL SCIENCES, JODHPUR

DEPARTMENT OF RADIATION ONCOLOGY)

PROFORMA FOR DATA COLLECTION

NAME OF THE PATIENT: REG. ID:			AGE:	SEX:
RELIGION:				
RESIDENCE:				
MOBILE NO:				
HT:	WT:	BMI:	(AT START C	F TREATMENT)
SYMPTOMS AT H	PRESENTATIO	DN:		
DURATION OF SYMPTOMS:				
ADDICTION HIST	FORY: NEVER	R/ FORMER/ CUI	RRENT	
MENSTRUAL ST	ATUS:-			
PARITY:				
HISTORY OF CO-MORBIDITIES: DM TYPE2 / HTN / IHD / CKD / COPD				
/DYSLIPIDEMIA/ PAD/STROKE. THERS				
RESPONSE ASS	ESSMENT			
A) DATE:				
B) CURRENT DISEASE STATUS:				
RELAPSE/PROG	RESSION:			
A) DISTAL/LOCAL(SITE AND NUMBER):				
B) TREATMENT	OFFERED:			

DATE OF DEATH/DATE OF THE LAST FOLLOW-UP: CAUSE OF DEATH:

ANNEXURE-2

CARDIAC ASSESSMENT AT FOLLOW UP

DEPT OF RADIATION ONCOLOGY AND DEPT OF CARDIOLOGY

"SURVIVORSHIP ISSUES IN BREAST CANCER SURVIVORS TREATED AT OUR CENTRE"

NAME OF THE PATIENT:	
REG. ID:	

AGE: SEX:

ELECTRO-CARDIOGRAPHY:

HEART RATE-

QTC -____MS

 $T_{WAVE PEAK} - T_{WAVE END} =$ _____

 $(T_{WAVE PEAK} - T_{WAVE END})/Q_{TC} =$

ECHOCARDIOGRAPHY:

LVEF (%)-

LV DIASTOLIC FUNCTION-

LV SYSTOLIC FUNCTION-

MYOCARDIAL PERFUSION INDEX-

ANNEXURE-3

AJCC 8TH TNM PROGNOSTIC CLASSIFICATION

T CATEGORY	T CRITERIA
TX	Primary tumor cannot be assessed
то	No evidence of primary tumor
Tis (DCIS) ^a	Ductal carcinoma in situ (DCIS)
Tis (Paget)	Paget disease of the nipple NOT associated with invasive carcinoma and/or carcinoma in situ (DCIS) in the underlying breast parenchyma. Carcinomas in the breast parenchyma associated with Paget disease are categorized based on the size and characteristics of the parenchymal disease, although the presence of Paget disease should still be noted.
T1	Tumor \leq 20 mm in greatest dimension
T1mi	Tumor \leq 1 mm in greatest dimension
Tla	Tumor > 1 mm but ≤ 5 mm in greatest dimension (round any measurement from $> 1.0-1.9$ mm to 2 mm)
T1b	Tumor $>$ 5 mm but \leq 10 mm in greatest dimension
T1c	Tumor > 10 mm but \leq 20 mm in greatest dimension
T2	Tumor > 20 mm but \leq 50 mm in greatest dimension
тз	Tumor > 50 mm in greatest dimension
T4	Tumor of any size with direct extension to the chest wall and/or to the skin (ulceration or macroscopic nodules); invasion of the dermis alone does not qualify as T4
T4a	Extension to the chest wall; invasion or adherence to pectoralis muscle in the absence of invasion of chest wall structures does not qualify as T4
T4b	Ulceration and/or ipsilateral macroscopic satellite nodules and/or edema (including peau d'orange) of the skin that does not meet the criteria for inflammatory carcinoma
T4c	Both T4a and T4b are present
T4d	Inflammatory carcinoma (see "Rules for Classification")

CATEGORY	CRITERIA
cN ^a	
cNX^{b}	Regional lymph nodes cannot be assessed (eg, previously removed)
cN0	No regional lymph node metastases (by imaging or clinical examination)
cN1	Metastases to movable ipsilateral level I and II axillary lymph node(s)
cN1mi ^c	Micrometastases (approximately 200 cells, larger than 0.2 mm, but none larger than 2.0 mm)
cN2	Metastases in ipsilateral level I and II axillary lymph nodes that are clinically fixed or matted;
	or in ipsilateral internal mammary lymph nodes in the absence of axillary lymph node metastases
cN2a	Metastases in ipsilateral level I and II axillary lymph nodes fixed to one another (matted) or to other structures
cN2b	Metastases only in ipsilateral internal mammary lymph nodes in the absence of axillary lymph node metastases
cN3	Metastases in ipsilateral infractavicular (level III axillary) lymph node(s) with or without level I and II axillary lymph node involvement;
	or in ipsilateral internal mammary lymph node(s) with level I and II axillary lymph node metastases;
	or metastases in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement
cN3a	Metastases in ipsilateral infraclavicular lymph node(s)
cN3b	Metastases in ipsilateral internal mammary lymph node(s) and axillary lymph node(s)
cN3c	Metastases in ipsilateral supraclavicular lymph node(s)

pN ^d	
pNX	Regional lymph nodes cannot be assessed (eg, not removed for pathological study or previously removed)
pN0	No regional lymph node metastasis identified or ITCs only
pN0(i+)	ITCs only (malignant cell clusters no larger than 0.2 mm) in regional lymph node(s)
pN0(mol+)	Positive molecular findings by reverse transcriptase-polymerase chain reaction (RT-PCR); no ITCs detected
pN1	Micrometastases; or metastases in 1-3 axillary lymph nodes; and/or clinically negative internal mammary lymph nodes with micrometastases or macrometastases by sentinel lymph node biopsy
pN1mi	Micrometastases (approximately 200 cells, larger than 0.2 mm, but none larger than 2.0 mm)
pN1a	Metastases in 1-3 axillary lymph nodes, at least one metastasis larger than 2.0 mm
pN1b	Metastases in ipsilateral internal mammary sentinel lymph nodes, excluding ITCs
pN1c	pN1a and pN1b combined
pN2	Metastases in 4-9 axillary lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the absence of axillary lymph node metastases
pN2a	Metastases in 4-9 axillary lymph nodes (at least one tumor deposit larger than 2.0 mm)
pN2b	Metastases in clinically detected internal mammary lymph nodes with or without microscopic confirmation; with pathologically negative axillary lymph nodes
pN3	Metastases in 10 or more axillary lymph nodes;
	or in infraclavicular (level III axillary) lymph nodes;
	or positive ipsilateral internal mammary lymph nodes by imaging in the presence of one or more positive level I and II axillary lymph nodes;
	or in more than 3 axillary lymph nodes and micrometastases or macrometastases by sentinel lymph node biopsy in clinically negative ipsilateral internal mammary lymph nodes;
	or in ipsilateral supraclavicular lymph nodes
рNЗа	Metastases in 10 or more axillary lymph nodes (at least one tumor deposit larger than 2.0 mm);
	or metastases to the infraclavicular (level III axillary lymph) nodes
pN3b	pN1a or pN2a in the presence of cN2b (positive internal mammary lymph nodes by imaging);
	or pN2a in the presence of pN1b
pN3c	Metastases in ipsilateral supraclavicular lymph nodes

M CATEGORY	M CRITERIA
мо	No clinical or radiographic evidence of distant metastases ^a
cM0(i+)	No clinical or radiographic evidence of distant metastases in the presence of tumor cells or and no deposits no greater than 0.2 mm detected microscopically or by using molecular techniques in circulating blood, bone marrow, or other nonregional lymph node tissue in a patient without symptoms or signs of metastases
M1	Distant metastases detected by clinical and radiographic means (cM) and/or histologically proven metastases larger than 0.2 mm (pM)

WHEN T IS	AND N IS	AND M IS	GROUP IS
Tis	NO	MO	0
T1	NO	мо	IA
то	N1mi	MO	IB
T1	N1mi	MO	IB
то	N1	мо	IIA
T1	N1	MO	IIA
T2	NO	MO	IIA
12	N1	MO	IIB
13	NO	MO	IIB
T1	N2	MO	IIIA
T2	N2	MO	AIII
13	N1	MO	HIA
тз	N2	MO	IIIA
14	NO	MO	IIIB
T4	N1	MO	IIIB
T4	N2	MO	IIIB
Any T	N3	MO	IIIC
Any T	Any N	M1	IV

ANNEXURE-4

ETHICAL COMMITTEE CERTIFICATE

No. AIIMS/IEC/2021/ 3.559

Date: 12/03/2021

ETHICAL CLEARANCE CERTIFICATE

Certificate Reference Number: AIIMS/IEC/2021/3394

Project title: "To study of survival outcomes, prognostic and treatment related factors in patients of breast cancer treated with post-operative radiation therapy"

Nature of Project:	Research Project Submitted for Expedited Review		
Submitted as:	D.M. Dissertation		
Student Name:	Dr.Rishi P Nuir		
Guide:	Dr. Puneet Parcek		
Co-Guide:	Dr. Jeewan Ram Vishnoi, Dr. Surendra Deora & Dr. Poonam Elhence		

Institutional Ethics Committee after thorough consideration accorded its approval on above project.

The investigator may therefore commence the research from the date of this certificate, using the reference number indicated above.

Please note that the AIIMS IEC must be informed immediately of:

- · Any material change in the conditions or undertakings mentioned in the document.
- Any material breaches of ethical undertakings or events that impact upon the ethical conduct of the research.

The Principal Investigator must report to the AIIMS IEC in the prescribed format, where applicable, bi-annually, and at the end of the project, in respect of ethical compliance.

AIIMS IEC retains the right to withdraw or amend this if:

- Any unethical principle or practices are revealed or suspected
- Relevant information has been withheld or misrepresented

AIIMS IEC shall have an access to any information or data at any time during the course or after completion of the project.

Please Note that this approval will be rectified whenever it is possible to hold a meeting in person of the Institutional Ethics Committee. It is possible that the PI may be asked to give more clarifications or the Institutional Ethics Committee may withhold the project. The Institutional Ethics Committee is adopting this procedure due to COVID-19 (Corona Virus) situation.

If the Institutional Ethics Committee does not get back to you, this means your project has been cleared by the IEC.

On behalf of Ethics Committee, I wish you success in your research.

