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SUMMARY 

Background 

Continuous glucose monitoring (CGM) provides an insight into daily glucose dynamics 

and glycemic variability (GV), hence providing information beyond self-monitoring of 

blood glucose (SMBG) for short-term glycemic management. Recent studies have put 

spotlight on CGM metrics like time-in-range (TIR) as a measure to assess long-term 

glycemic control, on account of its correlation with HbA1c and demonstration of its 

association with microvascular complications. Since studies have majorly focussed on 

individuals with type 1 diabetes or on Caucasian and Black individuals, we performed 

a descriptive study to assess correlation of CGM metrics with HbA1c and GV in Indian 

type 2 diabetic (T2DM) individuals. 

Methodology 

We enrolled 52 T2DM patients on stable lifestyle and anti-diabetic medications for 

atleast 3 months. Baseline clinical and laboratory workup for complications was done 

followed by CGM (Medtronic IPRO®2 Professional) with Enlite sensor for a minimum 

of 48 hours in all the patients. 

Results 

The mean age at presentation was 52.62 (7.51) years, median duration of diabetes was 

6.5 years (IQR: 2-11). Males comprised 55.7% of the participants (n=29). Mean HbA1c 

was 8.75% (7.65- 10.96), with 65.4% (n=34) having one or more microvascular 

complications. All the patients were on OHAs, whereas 13.5% (n=7) were additionally 

on insulin. Median number of CGM reading were 831 (IQR 802-1069.5), with 

satisfactory agreement with glucometer cross-calibration.  

Correlation was analysed using Spearman’s rho (ρ) coefficient. There was a positive 

correlation of hyperglycemic indices like average glucose (ρ=0.764, p<0.001), time-

above-range (TAR) (ρ=0.746, p<0.001), area under curve (AUC) above limit (ρ=0.707, 

p<0.001) with HbA1c. TIR (ρ=-0.722, p<0.001) and time-below-range (TBR) (ρ=-

0.396, p<0.001) had a negative correlation with HbA1c.  
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Analysis of area-under-curve (AUC) for hyperglycemia (BG>100 mg/dl) could detect 

progressively decreasing contribution of postprandial hyperglycemia and increasing 

contribution of basal hyperglycemia with worsening glycemic control in the form of 

increasing HbA1c tertiles, with a more striking difference was in the highest HbA1C 

tertile (HbA1c≥10%). Fasting hyperglycemia remained the major contributor to total 

hyperglycemia at all levels of glycemic control, ranging from 66.61% (IQR 59.91- 

82.37) in the lowest HbA1c tertile (HbA1c < 8%) to 83.89% (IQR 78.91- 89.78) in the 

highest HbA1c tertile. 

Additionally, TBR ≥ 4% was seen in 8 (14.8%) patients; 75% (n=6) had time spent in 

level 2 hypoglycemia (< 54 mg/dl) of >1%, and 75% were asymptomatic, thus 

identifying hypoglycemic episodes that would otherwise have been missed. CV% was 

a significant predictor of hypoglycemia using ROC analysis (AUC=0.793, 95% CI: 

0.654-0.931, p=0.09). A CV% cut-off of 26.4% had a 100% sensitivity and 63.6% 

specificity for predicting hypoglycemia, while the traditional threshold of CV% ≥ 36% 

had a sensitivity of only 37.5% and specificity of 97.7%.  

Conclusions 

Fasting hyperglycemia is the major component of total hyperglycemia across the 

spectrum of control in Indian type 2 diabetic patients, and progressively worsens with 

increasing HbA1c. Most CGM metrics obtained with a short 2-day CGM profile 

correlated well with HbA1c, implying utility as an alternate measure of long-term 

glycemic control in patients on stable lifestyle and medications. HbA1c and SMBG do 

not adequately reflect vital parameters like glycemic variability and hypoglycemia. 

CGM can fill the void by aiding identification of asymptomatic hypoglycemias and 

glycemic variability. A CV% cut-off of 26.4% had 100% sensitivity in predicting 

hypoglycemia with TBR ≥ 4%.  
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INTRODUCTION 

Diabetes mellitus is a major contributor of morbidity and mortality worldwide, and has 

assumed the role of a modern age epidemic with the wave of lifestyle changes, 

urbanization and economic development which have become the new normal. As per 

the tenth edition of the International Diabetes Federation (IDF) diabetes atlas, 537 

million adults are estimated to be living with diabetes, with diabetes occurring in one 

in every 10 adults. This number is estimated to grow to 783 million by the year 2045. 

The concerning part is that diabetes is an iceberg disease, with around half of diabetic 

adults going undetected and potentially landing up with complications by the time they 

are diagnosed. Another 541 million adults have impaired glucose tolerance (IGT), with 

high risk of progression to type 2 diabetes mellitus (T2DM) (1).  

Diabetes has transitioned from predominantly a rich man’s problem to a widespread 

pandemic. Three in four adults with diabetes reside in low- and middle-income 

countries. India has been called the diabetes capital of the world, with an estimated 74 

million adults living with diabetes in 2021, a prevalence of 9.6%, and an estimated 

increase to 124 million by the year 2045. An additional 40 million and 75 million are 

estimated to be having impaired glucose tolerance (prevalence of 5.4%) and impaired 

fasting glucose (prevalence of 7.8%) respectively. The total diabetes-related estimated 

health expenditure in India amounted to approximately 8485 million USD in 2021 (1).  

Diabetes leads to both microvascular and macrovascular complications, leading to 

significant morbidity and mortality. One person dies of diabetes every 5 seconds, 

costing the healthcare systems significantly. IDF estimated a health expenditure of USD 

966 billion dollars in 2021 – a 316% increase over the last 15 years (1). Hence, the 

disease burden is expected to significantly worsen over the coming years, with 

proportionate increases in health-care costs. 

The primary culprit for complications associated with diabetes is the sustained chronic 

hyperglycemia. HbA1c has long been considered an estimate of the average blood 

glucose levels in the prior 8-12 weeks, depending on the red cell turnover. It has since 

been the standard of care in diagnosis and management of diabetes, with demonstration 

of irrefutable association with microvascular, and to some extent with macrovascular 
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complications in several landmark long-term follow up trials in type 1 and type 2 

diabetes (2,3).  

Being a measure of average glycemia, HbA1c (or overall hyperglycemia) is contributed 

to by both fasting as well as postprandial hyperglycemia. Monnier et al published a 

landmark study in 2003, to study the relative contributions of these components in total 

hyperglycemia (4). It was seen that postprandial hyperglycemia was the predominant 

component in patients with relatively well-controlled diabetes, whereas fasting 

hyperglycemia became predominant with worsening glycemic control. Several studies 

have since been published to study the relationship in different populations and 

ethnicities, with variable results.   

While earlier studies employed self-monitored blood glucose (SMBG) readings to 

evaluate the relationship, newer studies have employed continuous glucose monitoring 

(CGM) for a finer look into the intricacies of glucose dynamics. Modern continuous 

glucose monitoring system (CGMS) systems are capable of measuring interstitial 

glucose levels as frequent as every five minutes, producing upto 288 readings in 24 

hours, via a continuous glucose sensor inserted into the skin. Hence, we felt that there 

is a research gap in this area, especially with regards to Indian type 2 diabetes patients, 

who have a unique phenotype along with multiple socio-cultural determinants of 

glycemic control. 

Use of CGM also permits study of glucose fluctuations, which are not reflected in 

conventional measures of glycemic control like HbA1c and SMBG.  Several studies 

have demonstrated association of glycemic variability to both microvascular and 

macrovascular complications. Additionally, identifying glycemic variability also has 

implications for identifying at risk individuals for hypoglycemia and impaired quality 

of life. CGM provides a wealth of data to provide insights into role of blood glucose 

variability and tailoring therapies towards optimal glycemic control. 

Studies employing CGM also have been relatively infrequent in the Indian setting, 

hence there is a scope for studies to assess utility and validity of CGM data in our 

population, and assess its correlation with HbA1c, the current gold standard metric for 

outcomes in diabetes therapy. This is particularly important in the background of inter-

racial variations in HbA1c, and hence needs to be studied in different populations. 
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Utility of HbA1c is also limited in the presence of conditions affecting RBC life span 

and hemoglobinopathies. Additionally, inter-individual variations in hemoglobin 

glycation and deglycation rates, RBC life span can also result in significant inter-

individual variations in the relationship of HbA1c to average glucose (5). Hence, basing 

therapeutic decisions on HbA1c alone in an individual patient might lead to over- or 

under-treatment of hyperglycemia, and can lead to potentially catastrophic 

complications like hypoglycemia.  

CGM also provides an opportunity to delve into the minutiae of glucose dynamics. The 

demonstration of validity of CGM measures will further aid incorporation of this newer 

technology into day-to-day clinical decision-making. There is an unmet need for studies 

evaluating CGM-parameters in Indian type 2 diabetes patients, which can help in 

understanding the pathophysiology of the disease and aid personalized management of 

diabetes in the Indian context. 
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REVIEW OF LITERATURE 

Optimal management of diabetes entails both appropriate lifestyle modifications and 

pharmacological therapy. However, the importance of achieving glycemic targets is 

often understated in day-to-day clinical practice and is critical in preventing 

complications of diabetes. Herein lies the role of diabetes education, which should 

encompass dispensing information about achieving glycemic targets and its subsequent 

health implications, empowering the patients in target-oriented self-management of 

diabetes. 

Long-term glycemic management is assessed using HbA1c, which has stood the test of 

time as a robust clinically validated outcome measure with consistent meaningful 

benefits demonstrated with HbA1c reduction in clinical trials. Short-term glycemic 

control has been traditionally assessed using laboratory or home-based monitoring of 

blood glucose. However, these methods are found lacking when it comes to fine-tuning 

glycemic management in an individual patient, increasingly important in the era of 

precision medicine. The pros and cons of these measures of glycemic control have been 

discussed in the following sections. 

HbA1C 

Glycated hemoglobin (HbA1c) HbA1c has long been the traditional outcome for 

glycemic control in clinical practice as well as research. In fact, it has long been the 

standard of care in diagnosis and management in diabetes. It is derived from non-

enzymatic glycation of HbA, which is the most common form of hemoglobin in 

humans, comprising of 97% of total hemoglobin. Protein glycation is one of the 

pathophysiological drivers of complications of diabetes. The attachment of 

carbohydrate moieties to amino acids, known as the Maillard reaction, has been called 

the Schiff reaction when involving glucose. HbA1c is formed by irreversible 

attachment of glucose to one or both N-terminal valine residues on the β chain of HbA 

as per the International Federation of Clinical Chemistry (IFCC) definition. First step 

of the reaction results in the formation of an unstable aldimine, which is called pre-

HbA1c or the Schiff base. This can either dissociate, or transform into a stable 

ketoamine by undergoing an Amadori rearrangement. Glucose can also attach to other 
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amino acids like lysine on both α and β chains of Hb, but these are not commonly 

measured by the modern assays  (6).  

HbA1c and glycemia 

The rate of glycation of Hb depends on the ambient glycemia, and HbA1c reflects the 

average glycemic control over the preceding 8-12 weeks, reflective of the red cell life 

span of around 12 weeks. Hence, as a summary measure, it is reflective of both fasting 

as well as postprandial glucose status of an individual. The relative contribution of each 

has been a matter of great debate and research. 

In a systematic review and meta- analysis conducted by Ketema EB et al, out of the 

eleven studies which calculated a correlation coefficient to measure the strength of 

association between fasting plasma glucose (FPG), postprandial glucose (PPG) and 

HbA1c, all studies reported a statistically significant (p- value < 0.05) correlation 

between PPG or FPG and HbA1c. Out of the eleven studies, seven found a better 

correlation between PPG and HbA1c than FPG, whereas three studies revealed a 

stronger correlation between FPG and HbA1c than PPG. The remaining one study 

found almost equal correlation coefficients for both tests. The correlation coefficient (r) 

ranged from 0.20–0.86 for PPG and from 0.28–0.84 for FPG, with a pooled correlation 

coefficient of 0.61 and 0.67 respectively (7).  

While the earlier studies used isolated glucose measurements to assess correlations, 

several of the later studies have employed area under the curve (AUC) measure to 

summarize the total, fasting and postprandial glycemic load. This enables taking into 

account both the severity, direction as well as duration of glycemic fluctuations. In a 

landmark study by Monnier et al, the relative contribution of postprandial glucose 

excursions to HbA1c was found to be predominant in fairly controlled patients, whereas 

the contribution of fasting hyperglycemia increased gradually at higher HbA1c levels 

(4). Following this, several other studies have researched the relative contributions of 

fasting and postprandial glycemia to overall glycemia. These have been summarised in 

Table 1. 
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Table 1. Summary of studies assessing relative contributions of fasting and 

postprandial hyperglycemia to total hyperglycemia 

Author, site of 

study 
Methodology Key findings and conclusions 

Monnier et al, 

Diabetes Care, 

2003 

France 

(4) 

• N= 290 type 2 diabetes (non-

insulin, non-acarbose) 

• SMBG (8 am, 11 am, 2 pm, 5 

pm) 

• HbA1c (%) quintiles with 58 

patients each: A1c <7.3, 7.3- 

8.4, 8.5- 9.2, 9.3- 10.2, >10.2. 

• Postprandial glucose contribution 

progressively decreased from the 

lowest (69.7%) to the highest quintile 

of HbA1c (30.5%, P< 0.001). 

• Reciprocal increase in contribution of 

fasting glucose with increasing 

HbA1c: 30.3% in the lowest vs. 69.5% 

in the highest quintile (P< 0.001). 

Monnier et al, 

Diabetes care, 

2007 

France 

(8) 

• N=132 type 2 diabetes (non-

insulin, non-acarbose) 

• MiniMed CGMS x 3 days 

• Five groups based on HbA1c 

(%) concentration: <6.5 (n 

=30); 6.5–6.9 (n =17); 7–7.9 

(n =32); 8–8.9 (n=25); >9 

(n=26) 

Three-step deterioration in glucose 

homeostasis 

Statistically significant differences 

between 

• Groups 1 and 2 for daytime 

postprandial periods (considered as a 

whole) 

• Groups 2 and 3 for morning periods 

(dawn phenomenon) 

• Groups 3 and 4 for nocturnal fasting 

periods 

Wang et al 

Diabetes 

metabolism 

research and 

reviews, 2010 

Taiwan (9) 

• N= 121 type 2 diabetes (non-

insulin) 

• Medtronic MiniMed x 72 

hours 

• HbA1c (%) quintiles (<7.1, 

7.1- 7.5, 7.6- 8, 8.1- 8.7, 8.8- 

12.7) 

• Contribution of PPG to 24-h 

hyperglycaemia significantly higher 

than FG in the lowest quintile of 

HbA1c (p < 0.001). 

• Nearly equal contributions in the other 

four quintiles. 

Riddle et al, 

Diabetes Care, 

2011 

(10) 

• N= 1699 (derived from six 

RCTs), T2DM on oral agents 

with HbA1c> 7% 

• Re-evaluated after 24-28 

weeks of basal insulin versus 

other therapies like oral agents, 

prandial or premix insulin 

• Basal hyperglycemia contributed to 

76–80% of hyperglycemia over the 

observed range of baseline HbA1c 

• Basal hyperglycemia decreased to 

about 1/3 of total hyperglycemic 

burden after basal insulin therapy, and 

to 2/3 of total burden after other 

therapies 

Peter et al, 

Diabetes and 

Metabolism, 2013 

(11) 

• N= 52 type 2 DM (non-insulin, 

non-acarbose) 

• Periodic venous samples over 

12 hours covering three post-

meal periods in the daytime 

• Relative contribution of PPG 

decreased across the groups from 

43.5% (HbA1c < 7.0%) to 17.8% 

(HbA1c ≥ 9.0%) 
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• Five HbA1c (%) groups (<7, 

7- <7.5, 7.5- <8, 8- <9, >9) 

• Fasting hyperglycemia contributed 

significantly in all HbA1c subgroups 

(56.5% in the lowest HbA1c 

subgroup), increasing with worsening 

control. 

Xin Kang et al 

Diabetes 

technology and 

therapeutics, 2015 

China 

(12) 

• N=59, newly diagnosed T2DM 

• CGMS (Medtronic MiniMed) 

x 72 hours 

• Relative contributions of PPG in the 

T2DM patients with HbA1c levels of 

<7.0%, 7.0–9.0%, and > 9.0% were 

77.23%, 53.43%, and 22.78%, 

respectively 

• Contribution of basal glucose 

exceeded PPG contribution at 

HbA1c> 9% 

Lim et al 

Journal of diabetes 

investigation 2017 

Malaysia 

(13) 

 

• N=100, type 2 diabetes, 

Malaysia 

• CGMS iPro 2: 6 days: 0,4,8 

weeks 

• HbA1c quintiles: 6–6.9, 7–

7.9%, 8–8.9%, 9–9.9% and 

≥10% 

 

• Included a multiracial cohort (Malays, 

Indians, Chinese) 

• Mean PPH significantly decreased as 

HbA1c advanced 

• FH contribution increased from 54% 

(HbA1c 6–6.9%) to 67% (HbA1c 

≥10%) 

• FH predominated when HbA1c was 

≥9 and ≥10% in oral antidiabetic drug- 

and insulin-treated patients, 

respectively 

Kristine Faerch et 

al, Nutrition and 

diabetes, 2018 

Multicentric 

(14) 

 

• Non diabetics (n=77) 

• Diabetics with A1C <6.5% 

(N=63), >6.5% (n=34) (non-

insulin) 

• Association of glycemic 

exposure with HbA1c 

• Assessed proportion of 

variance in HbA1c explained 

by glycemic and non-glycemic 

factors (age, sex, BMI, 

ethnicity). 

• PPG most strongly predictive of 

HbA1c in non-diabetics 

• In T2D, preprandial glucose and PPG 

exposure contributed equally to 

HbA1c. 

• Factors in the analysis (glycemic and 

non-glycemic) explained 35%, 49% 

and 78% of variance in HbA1c in non-

diabetics, T2DM with HbA1c< 6.5% 

and T2DM with HbA1c >6.5% 

respectively. 

Yan et al, 

International 

Journal of 

Endocrinology, 

2019 

China (15) 

• N= 305, newly diagnosed 

T2DM/ IFG/ IGT (drug naïve) 

• Sofsensor, CGMS-Gold, 

Medtronic Incorporated, 24 h 

data used for calculations 

• PPG contribution predominant in 

HbA1c < 8.5%, FG predominant at 

HbA1c > 8.5% 
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Majority of the studies replicated the pattern observed by Monnier et al, with 

differences in absolute values of relative contributions across various studies owing to 

differences in methodologies and different patient populations. Riddle et al showed a 

significant departure from the findings by Monnier et al with results showing a 

predominance of basal hyperglycemia across the range of HbA1c in their study (10). 

On the other hand, Wang et al found an almost equal contribution of fasting and 

postprandial hyperglycemia in the latter four HbA1c quintiles, as opposed to the 

increasing contribution of fasting hyperglycemia in the previous studies by Monnier et 

al. The authors ascribed these differences to using a better modality like CGM for 

analysis (as opposed to SMBG which might underestimate postprandial excursions), 

and the higher glycemic response observed in Asian individuals as compared to 

Caucasians. Other pertinent findings included a higher glycemic response after 

breakfast compared to lunch and dinner, which might be secondary to the diurnal 

changes in insulin sensitivity or increased GI of breakfast recipes in local diets. The 

authors proposed that PPG remains a significant targetable avenue even in moderate-

to-poorly controlled Taiwanese type 2 diabetic patients (9).  

HbA1c as an outcome measure 

HbA1c has been the gold standard outcome measure of glycemic control that has been 

strongly associated with chronic diabetic vascular complications. Intensive control, as 

demonstrated with HbA1c, was found to decrease the rates of microvascular 

complications in both type 1 and type 2 diabetes in DCCT-EDIC (The Diabetes Control 

and Complications Trial, Epidemiology of Diabetes Interventions and Complications) 

and UKPDS (United Kingdom Prospective Diabetes Study) trials respectively, with a 

log-linear relationship between HbA1c and risk of complications, with no identifiable 

glycemic threshold.  Long term follow up in these studies also revealed significant 

reductions in the risks of non-fatal myocardial infarction (MI), stroke and 

cardiovascular death in DCCT-EDIC, and MI and all-cause mortality in UKPDS 

(2,3,16,17) 

Several large trials like the ACCORD (Action to Control Cardiovascular Risk in 

Diabetes), ADVANCE (Action in Diabetes and Vascular Disease: Preterax and 

Diamicron MR Controlled Evaluation) and VADT (Veterans Affairs Diabetes Trial) 

were conducted to study the effect of further intensive glycemic control on 
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cardiovascular outcomes in relatively older patients with longer duration of diabetes, 

with or at high risk for cardiovascular disease. Intensive therapy to target lower HbA1c 

did not translate into significant reduction in cardiovascular outcomes in these trials, 

except long term follow up data of VADT trial which showed decrease in the risk of 

cardiovascular events, but no benefit in cardiovascular or overall mortality. Higher 

prevalence of CV disease or CV risk factors in these trials translated into better 

management of risk factors like hypertension and dyslipidemia. Additionally, shorter 

follow-up could have led to lack of a demonstrable benefit of glucose lowering therapy 

on CV outcomes. On the contrary, increased hypoglycaemia, cardiovascular deaths and 

overall mortality were observed in the intensive treatment arm of the ACCORD trial, 

for which the trial had to terminated prematurely (18–20). Although the log linear 

relationship of HbA1c with complications would logically imply better outcomes with 

more intensive control to achieve near-normal glycemia, the results of these trials 

mandate a relook into targeting normalization of HbA1c alone and demand a more 

personalized management of diabetes, with the optimum strategy remaining a matter of 

debate.  

Fallacies of HbA1c 

Analytical fallacies of HbA1c 

HbA1c offers the advantage of fewer pre-analytical errors compared to blood glucose 

estimation. It can be measured by several methods in the laboratory. These can involve 

separation of HbA1c from other Hb fractions based on physico-chemical properties, 

like ion exchange chromatography, affinity chromatography and capillary 

electrophoresis. Alternatively, it can be measured by immunoassays and enzymatic 

assays (21). Sample can be collected in a non-fasting state at any time of the day. 

Samples are usually stable at 2-8° C for upto 1 week, but high-performance liquid 

chromatography (HPLC) methods may be prone to ageing effects. However, conditions 

which affect red cell turnover like hemolytic anemias, blood loss, pregnancy, chronic 

kidney disease, and drugs like erythropoietin can cause fallacious results. Diseases like 

thalassemia that result in quantitative abnormalities in assembly of normal Hb 

molecule, lead to increased levels of HbF, HbA2 etc. Lack of a β chain in HbF results 

in glycation at the lysine residues which is approximately one-third that of HbA, 

resulting in underestimation of levels. 
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Additionally, method and variant-specific interferences can arise from structural 

variants of Hb like HbS, HbC, HbD and HbE. The interference pattern for commonly 

used HbA1c assays are periodically updated on the National Glycohemoglobin 

Standardization Program (NGSP) website (22). Other adducts like carbamylated 

hemoglobin and pre-HbA1c can also interfere with HbA1c determination, especially in 

older assays (21).  

With an array of assays available, standardization of the assays to a reference procedure 

to ensure uniformity in reporting and comparability assumed utmost importance. This 

led to the development of two reference methods by the IFCC- high performance liquid 

chromatography- electrospray mass spectroscopy (HPLC-ESI-MS) and HPLC-

capillary electrophoresis (HPLC-CE), and the results were reported in SI units (mmol 

of HbA1c/ mol of total Hb). Being technically demanding, it has still not become the 

norm in several countries including India. Alternatively, NGSP led the impetus for 

harmonization of the assays, i.e., calibration against the method used in the landmark 

DCCT trial, with HbA1c values being reported as % of total Hb. This remains the most 

common method of measurement of HbA1c in Indian healthcare, with NGSP-certified 

assays providing results traceable to the parent DCCT trial (21). 

Inter-individual variability of HbA1c 

The reliability of HbA1c in an individual patient also has been under the scanner in the 

last couple of decades. In a study by Yudkin et al, it was seen that the degree of glucose 

intolerance could explain only a third of the variance in HbA1c values in non-diabetic 

individuals, emphasizing the role of non-glycemic factors that can influence HbA1c 

levels. Additionally, patients were classified as high and low glycators based on the 

relationship between HbA1c and mean glucose. The two categories did not differ with 

respect to age, gender distribution, body mass index (BMI), smoking and hemoglobin 

levels. The difference could not be explained by the ambient blood glucose levels or 

dietary composition as well. This relationship persisted on follow up of 4.4 years, which 

makes this phenomenon likely to be a reproducible biological variation rather than an 

analytical or technical one (23,24).  

The landmark A1C-derived Average Glucose Study (ADAG) study established a linear 

mathematical relationship between HbA1c and average glucose using CGM-derived 

observations, but the average glucose values for a specified HbA1c and vice-versa had 
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dispersion with overlapping, making it slightly less useful in an individual patient (25). 

The variability has been majorly ascribed to the inter-individual variations in RBC life 

span. In fact, Malka et al derived a patient-specific correction factor to account for RBC 

kinetics from continuous glucose monitoring (CGM)-  derived average glucose and 

HbA1c. Use of this correction factor to determine average glucose from future HbA1c 

values was found to improve the accuracy of the derived average glucose values (26).  

Beck et al reported that a wide range of mean glucose values obtained from CGM 

studies can be associated at a given laboratory HbA1c value (27). Hence, the estimated 

HbA1c so calculated from mean glucose values may vary considerably with respect to 

laboratory HbA1c leading to confusion. This was also the reason why a nomenclature 

change was proposed by Bergenstal et al from the older term “estimated A1c” to 

“glucose management indicator” (GMI) (28). 

The possible perils of using HbA1c as a target during management was put forth by 

Hempe et al. In a post hoc analysis of the ACCORD data, the investigators derived a 

linear regression equation to derive predicted HbA1c from FPG values from 1000 

randomly extracted patients, and this equation was then used to calculate predicted 

HbA1c and hemoglobin glycation index (HGI) (difference between laboratory HbA1c 

and predicted HbA1c) for the remaining participants in the study. It was seen that 

improved primary outcome (CV composite) was restricted to low and moderate HGI 

subgroups, whereas the increased mortality was confined to the high HGI subgroup. 

The likely explanation for this was that the falsely high HbA1c in this subgroup could 

have erroneously led to more aggressive therapy for lowering of HbA1c, leading to 

increased risk of hypoglycemia and mortality (29). 

Inter-racial variations of HbA1c 

Additionally, HbA1c levels may also exhibit ethnic and racial variations. African-

Americans exhibit higher HbA1c values than Whites for a given mean glucose 

concentration, whereas Mexican Americans have intermediate values. These variations 

can represent true variations in glycemia, or may be related to non-glycemic factors like 

genetic factors, population prevalence of Hb variants and Glucose-6-phosphate 

dehydrogenase (G6PD) deficiency, variable rates of red cell turnover or hemoglobin 

glycation. Hence, interpretation of HbA1c values should be done in this context, though 
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studies suggest that HbA1c cutoffs for diagnosis and its association with development 

of complications is similar across racial groups (30,31).  

HbA1c does not reflect glycemic variability 

As much as HbA1C is a measure of overall glycemic exposure, it does not reflect 

glycemic variability (GV) and extremes of blood glucose measurements, including 

hypoglycemia. Two patients with similar HbA1c can have vastly different blood 

glucose tracings, hence an average measure cannot accurately depict the intricate details 

of the glycemic status of an individual. This includes daily variations of blood glucose, 

which are important for personalized management of diabetes.  

GV forms an integral component of the three corners of the dysglycemia triad: chronic 

hyperglycemia, hypoglycemia and glycemic variability. GV is defined as the 

fluctuation of measurements of either glucose or other related parameters of glucose 

homeostasis (e.g. HbA1c) over a given interval of time (32). This can include both long-

term GV, measured over several weeks or months, or short-term GV indices that can 

quantify intra or inter-day glycemic excursions, discussed subsequently. The 

importance of measuring GV lies in its potential role in contributing to diabetic 

complications. 

Glucose fluctuations can exhibit a more specific triggering effect on oxidative stress 

than chronic sustained hyperglycemia alone, as observed in the study by Monnier et al 

(33). Increased glucose variability is associated with mortality in the intensive care unit 

and is a consistent predictor of hypoglycemia, both in prospective studies and 

randomized clinical trials (34,35). It is also associated with reduced quality of life and 

patient satisfaction (36). 

The association of GV measures with adverse clinical outcomes was first apparent in 

patients with cardiovascular disease (CVD). In a meta-analysis comprising of 22 studies 

investigating the effect of GV on CVD risk factors by Liang et al, it was observed that 

carotid intima media thickness (IMT) and Homeostasis model assessment- estimated 

insulin resistance (HOMA-IR) were significantly lower in the low glucose variability 

group, proposing GV lowering as one of the approaches to reduce CVD risk factors 

(37). Similarly, post glucose challenge spikes were associated with carotid intima 

media thickness in a study by Temelkova-Kurktschiev TS et al (38).  
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Short-term glycemic variability has been associated with coronary artery spasm in 

dysglycemic subjects (39), occurrence of major adverse cardiovascular events (MACE) 

irrespective of diabetic status and subtype of CAD (40), severity of CAD beyond 

HbA1c (41) as well as post-procedural cardiovascular morbidity and mortality (42). 

Long-term GV, assessed by variability of  FPG and HbA1c have also been associated 

with adverse impacts including left-sided cardiac structural and functional changes, 

cardiovascular disease, progression of heart failure with preserved ejection fraction 

(HFpEF) and mortality in multiple studies (43–47) 

GV indices have also been studied in relation to microvascular complications. In a post 

hoc analysis of DCCT data by Kilpatrick et al, it was seen that longer term GV 

measured by HbA1c standard deviation (SD) had an additive risk for developing 

microvascular complications when compared to mean glycemia (48). This is in contrast 

to within-day measures of GV, which were not seen to have an impact on the risk of 

developing microvascular complications in the DCCT population (49). However, 

multiple studies since then have demonstrated an association of both long-term 

variability in HbA1c and FPG, and short term GV, with development of microvascular 

complications, i.e. retinopathy, albuminuria and neuropathy, including cardiovascular 

autonomic neuropathy (50–54) 

Both long-term and short-term GV has been associated with increased risk of 

hypoglycemia, including severe hypoglycemia in multiple studies (55–57). This has 

important short-term and long-term implications for quality of life, morbidity and 

mortality. Additionally, adverse mortality outcomes have been seen with short as well 

as long-term GV, independent of mean glycemia in several studies. These include both 

short and long-term mortality, emphasising the importance of tackling glycemic 

variability (58–60). 

Therefore, therapies that target GV can potentially be an answer to managing diabetic 

patients while minimizing the risk of hypoglycemia. The effect of diet composition on 

GV is an attractive targetable avenue for better glycemic management. Low 

carbohydrate high fat diet intake has been associated with improved GV measures 

(61,62). Additionally, low glycemic index (GI) mixed meals were associated with 

improved glycemic response, low GV and enhanced fatty acid oxidation compared to 

high GI meals in a  study by Camps et al (63). Interestingly, the sequence of nutrient 
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intake in a meal also appears to have an effect on GV, with initial intake of proteins and 

lipids followed by carbohydrates in a meal resulting in reduced postprandial excursions 

and glucose coefficient of variation in patients with type 2 diabetes (64). Both aerobic 

and resistance exercises, including simple measures of interrupting sedentary time with 

short breaks of light walking have also been demonstrated to reduce measures of GV 

in few studies (65,66).  

Hence, outside of an epidemiological or trial setting, there is a need for other metrics 

of glycemic control beyond HbA1c that can encapsulate the intricacies of glycemic 

management as well as influence long-term outcomes. 

Self-monitoring of blood glucose (SMBG)   

Blood glucose measurements provide glycemic status at the time of sampling, and 

hence can provide an actionable tool for the patient and the physician. Considering the 

logistical difficulty of obtaining venous glucose measurements for day-to-day 

management, capillary self-monitoring of blood glucose (SMBG) provides an attractive 

option for daily management. It has emerged as familiar tool for patients to monitor 

their glycemic status at a relatively affordable cost, encouraging patient involvement in 

self-care. It provides the convenience of at-home testing and provides actionable 

information to influence therapy, especially in patients with fluctuating blood glucose 

levels, patients prone to hypoglycemia and those on insulin therapy. In fact, frequent 

SMBG has been consistently associated with improved HbA1c in type 1 diabetes and 

insulin-treated type 2 diabetes patients (67,68). 

However, blood glucose values provide a single time cross-sectional data, and are 

influenced by multiple factors like time of sampling, glycemic load of meals, timing 

with respect to medication, standardization of the glucometer and their variable 

accuracy across the spectrum of blood glucose values, especially their wide coefficient 

of variations at extremes of blood glucose values, limiting their utility in these 

situations. Additionally, a single value does not provide information about the trend 

and rate of change of blood glucose values. Hence, basing therapeutic decisions on 

isolated blood glucose measurements may be risky and potentially catastrophic. SMBG 

also can miss asymptomatic and nocturnal hypoglycemic episodes. Additionally, the 
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painful pricks and the logistics of procuring needles and glucometer strips can add to 

the psychological burden of managing diabetes. 

Moving beyond HbA1c and SMBG with continuous glucose 

monitoring 

HbA1c is a measure of long-term glycemia over 8-12 weeks, can only provide a 

summary measure of glycemic excursions. It does not account for the inter and intraday 

glycemic excursions as discussed, which can have important prognostic and quality of 

life implications. SMBG can additionally provide an idea of glycemic variability and 

can aid detection of hypoglycemia, but it provides partial data at best, limited by the 

number of pricks for capillary glucose which can be practically done, underlining the 

need for a more comprehensive method to derive data that can do justice to the minutiae 

of glycemic management. Continuous glucose monitoring systems fit the bill in an 

almost perfect manner, enabling the use of frequent blood glucose readings for delving 

into the daily dynamics of blood glucose with around 300 glucose readings in a day.  

Deconstructing the CGM systems 

The components of a CGM device include a glucose sensor, an electronic processing 

unit and the data display unit. Based on the placement of the sensor, CGM technologies 

can be classified as invasive (intravenous or subcutaneously implantable sensors), 

minimally invasive (externally located sensor connected to an ex-vivo interstitial fluid 

drawing mechanism) and non-invasive (transdermal sensors or glucose measurement 

in body fluids). Current generation of CGM systems are classified as minimally 

invasive, i.e. employ sensors that are inserted or implanted under the skin, which are 

capable of measuring glucose levels in the interstitial fluid, usually by electrochemical 

methods like glucose oxidase system, which catalyses the oxidation of glucose to 

gluconolactone in the presence of redox cofactors like flavin adenine dinucleotide 

(FAD). Glucose sensors can be classified as per the mechanism used for conversion of 

the reduced cofactor back to its oxidised form. First and second-generation sensors use 

the ambient oxygen and redox mediators respectively as electron acceptors, whereas 

third generation sensors allow direct electrode transfer of the electrons, allowing 

reoxidation of the cofactor. Most current generation CGM sensors utilize first or second 

generation principles for glucose estimation (69,70).   
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Devices can also be classified as real-time or professional or retrospective CGM as per 

their intended use. Real time CGM systems are mainly designed for use by the patient, 

providing real time data to enable appropriate changes in diet, physical activity, 

medications etc. These can also provide safety alarms and information about the 

glycemic trends. Retrospective or professional CGM, on the other hand, is principally 

for physician use for retrospective analysis of CGM data to determine glycemic control 

and variability and provide appropriate advice for glycemic management. Hence, it can 

be used only in situations where immediate change in behaviour or medications is not 

required. Real-time CGM data can also be analysed retrospectively for identifying 

patterns, and hence represent the future of CGM technology. An alternate CGM system 

is the flash or intermittently scanned CGM, which provides retrospective glucose data 

on approximating the receiver or the compatible mobile device to the sensor. While this 

is capable of providing real time data at the time of scanning, it comes with limited 

memory constraints and cannot provide alarms for immediate action unless scanned 

(71). 

CGM metrics 

Modern CGM systems are capable of measuring interstitial glucose levels as frequent 

as every five minutes, producing up to 288 readings in 24 hours. The vast data derived 

from CGM is of limited utility in a raw form. The International Consensus on Time-in-

range (TIR) recommend a display of data in the form of ambulatory glucose profile 

(AGP) report, which is a standardized reporting format providing a graphical display 

of glucose dynamics as well as details of CGM metrics including glycemic variability 

and identifiable patterns. The committee has also put forth ten standardized core CGM 

metrics for wider clinical use and decision-making, with primary goal of increasing TIR 

while reducing the time below range (TBR) for effective and safe glucose control in 

individual patients. The guidelines also recommend clinical targets for these metrics in 

different patient populations. The recommendations for non-pregnant T1DM and 

T2DM individuals have been summarized in Table 2 (72). 
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Table 2. Standardized CGM metrics & recommendations in non-pregnant T1DM 

and T2DM, adapted from (72) 

CGM metric Definitions in T1DM and 

T2DM (non-pregnant) 

Recommendations 

Number of days CGM 

worn 

- 14 days 

Percentage of time CGM 

is active 

- 70% of data from 

14 days 

Mean glucose Calculated - 

Glucose management 

indicator (GMI) 

Calculated 

GMI (%) = 3:31 + 0.02392 

*(mean glucose in mg/dL) 

 

Glycemic variability 

(Coefficient of variation, 

% CV) 

Calculated 

% CV= Standard deviation/ 

mean  

≤ 36% 

Time-above-range (TAR)- 

Level 2 

Percentage of readings and time 

with glucose > 250 mg/dl 

< 5% 

Time-above-range (TAR)- 

Level 1 

Percentage of readings and time 

with glucose 181-250 mg/dl 

< 25% 

Time-in-range (TIR) Percentage of readings and time 

with glucose 70-180 mg/dl 

> 70% 

Time-below-range (TBR)- 

Level 1 

Percentage of readings and time 

with glucose 54-69 mg/dl 

< 4% 

Time-below-range (TBR)- 

Level 2 

Percentage of readings and time 

with glucose < 54 mg/dl 

< 1% 

 

Practical issues with CGM use 

The minimally invasive nature and the evolving technology of CGM comes with certain 

limitations. Firstly, there is a lag between blood glucose and interstitial glucose due to 

diffusion barriers between the two, making the CGM readings less reliable in the 

presence of rapidly changing blood glucose values.  This difference was as high as 15 

minutes in the older systems, which has gradually reduced to a few minutes with newer 

algorithms. Additionally, this discrepancy is also influenced by the wearer’s 
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physiological state at the time of measurement, like resting state, exercise, presence of 

hypoxia etc (71).  

Initial CGM devices had an inferior performance as compared to glucometers. The 

precision of CGM devices has improved over the years, with most of the current 

generation of devices having a mean absolute relative difference (MARD) values of 

≤10% approximately, where MARD represents the mean of absolute errors between all 

CGM values and matched reference values (73). Hence, CGM devices are accurate at 

a wide range of glucose levels, allowing therapeutic decision making. However, the 

accuracy is hampered in the presence of rapidly changing blood glucose levels or 

hypoglycemia, where the MARD can be as high as 20-30%, leading to erroneous 

interpretation and management in these situations (74,75). Similarly, CGM 

measurements are unreliable in states like hyperglycemic hyperosmolar state, ketosis, 

hypotension etc where interstitial glucose may not be reflective of blood glucose due to 

fluid shifts (76). 

The sensor lifespan is also variable, ranging anywhere from 5-14 days in the currently 

available CGM devices. A further increase in the sensor lifespan can potentially 

enhance user acceptance. Majority of the available CGM systems additionally require 

2-4 calibrations/day with capillary blood glucose, which is inconvenient, and presents 

a major psychological burden to the patients and caregivers. Some of the newer devices 

however come with factory calibration, overcoming this limitation. 

The availability of vast data and continuous alarms for hyperglycemia and 

hypoglycemia can also potentially cause unintended anxiety in some users. The vast 

data and its interpretation can also be a hinderance for physicians, in the absence of 

adequate training, support staff and logistics. 

Last, but definitely not the least, CGM still remains an expensive technology with 

limited insurance coverage and demanding out-of-pocket spending, especially in Indian 

scenario.  This, along with physician and patient inertia, is a major hurdle in widespread 

use of CGM in day-to-day clinical practice outside of research setting, especially in 

India. 
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Utility of CGM 

CGM systems provide a huge database of blood glucose readings obtained in a quick 

and painless manner, and can help finetune the glycemic management. Most modern 

systems are compact and portable, and can be functional while the wearer carries on 

with daily tasks of living, hence providing real-world data. The compatible devices and 

applications are continuously in the flux of development in order to make the 

experience more user friendly and educational. 

CGM as a tool for assessing short-term glycemic status 

The value of CGM profiles extends beyond the absolute numbers. They provide a mean 

glucose concentration derived from hundreds of readings, and can thus help determine 

if the laboratory HbA1c is overestimating or underestimating the average glycemic 

control of the patient and avoiding therapy decisions solely based on HbA1c.  

It can aid identification of patterns of hyperglycemia and hypoglycemia as well as 

potentially dangerous high or low glucose concentrations. Real-time CGMs can also 

identify and alert for glycemic trends and asymptomatic events, allowing timely 

interventions.  This can translate into beneficial long-term outcomes. For instance, in 

two randomized controlled trials by Beck et al, use of CGM resulted in greater 

improvement in HbA1c as compared to SMBG after 24 weeks of use in adults with 

type 1 and type 2 diabetes on multiple injections of subcutaneous insulin (77,78). 

CGM as a tool for assessing GV 

CGM systems also have the advantage of permitting study of measures of glycemic 

variability that are often missed with self- monitoring of blood glucose. Long-term GV 

can be assessed using standard deviation (SD) or coefficient of variation (CV) of 

multiple serial values of HbA1c, FPG and PPG over several weeks or months, and 

hence maybe partially reflective of ambient hyperglycemia on a longer timescale. On 

the other hand, short-term GV is characterized by sudden and rapid glycemic excursions 

occurring within or between-days. It is usually monitored by SMBG, which is limited 

by the inconvenience of multiple pricks every day.  

Short-term GV can be assessed much more comprehensively using CGMS, which gives 

glucose readings as frequent as up to every 5 minutes. Variability is expressed as 
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standard deviation (SD) and % coefficient of variation (% CV). Stable glucose levels 

are defined as a CV <36%. Unstable glucose levels are defined as CV ≥36%, and are 

associated with increased risk of hypoglycaemia, especially in insulin-treated subjects 

(79).  

Alternative measures of within-day GV are the mean amplitude of glycemic excursions 

(MAGE), measured as the mean of the differences between consecutive peaks and 

nadirs in glucose values, continuous overlapping net glycemic action (CONGAn), 

measured as the standard deviation of the difference between current blood glucose 

reading and a reading taken n hours earlier, and mean absolute glucose (MAG), 

measured as the absolute difference between sequential glucose readings divided by the 

time difference between the first and the last glucose reading.  

J-index combines information from both the average glucose as well as SD of glucose 

measurements (80). Lability index (LI) was proposed by Ryan et al as another measure 

of lability of glucose measurements in type 1 diabetic patients (81). Between day 

glucose variability is usually expressed as mean of daily differences (MODD), which 

is the absolute difference between two glucose values measured at the same time in a 

24 hour interval (32). 

Alternate metrics of importance which account for risks of hypoglycemia and 

hyperglycemia include low blood glucose index (LBGI) and high blood glucose index 

(HBGI), which measure the frequency and magnitude of hypoglycemia and 

hyperglycemia respectively, by amplifying respective glycemic excursions after log-

transformation of data, to render the skewed distribution as symmetric, without taking 

into account the excursions in the opposite direction. Average daily risk range (ADRR) 

is another metric that totals the daily peak risks for hypoglycemia and hyperglycemia 

(82). 

Glycemic risk assessment and diabetes equation (GRADE) score was proposed by Hill 

et al as an integrated summary score to represent the totality of glycemic risk in an 

individual patient. Individual contributions of euglycemia, hypoglycemia and 

hyperglycemia to the GRADE score were then expressed as % GRADE euglycemia, 

hypoglycemia and hyperglycemia respectively (83).  
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The multitude of metrics can create a lot of confusion for caregivers, and are a major 

hinderance for inculcation into routine practice. However, use of standardized and 

validated metrics derived from CGM can identify clinically significant glycemic 

variability, potentially affecting clinical outcomes and mitigate extremes of glycemic 

fluctuations like hypoglycemia. In a study by Breton et al, use of real-time CGM itself 

resulted in decreased glycemic variability and exposure to hypoglycemia, while 

maintaining average glycemia in patients with type 1 diabetes mellitus (84). 

Additionally, in the study by Avari et al, use of real-time CGM resulted in improvement 

in most measures of GV, especially the measures pertaining to hypoglycemia, as 

compared to intermittently scanned CGM (85).  

Utility of CGM-derived GV measures also extends to evaluation of different drug 

classes on GV. For instance, use of certain OHA classes like Glucagon-like peptide-1 

(GLP-1) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium glucose 

cotransporter-2 (SGLT-2) inhibitors and metformin have been demonstrated to have 

beneficial effect on GV measures in several studies (86). Similarly, Iga et al 

demonstrated better morning GV measures with use of insulin degludec when 

compared to glargine in a randomized controlled trial including Japanese type 1 diabetic 

patients (87).  

CGM as a tool for assessing long-term glycemic status 

CGM has also been proposed as a tool for assessing long-term glycemic control. 

Riddlesworth et al found that 14-days of CGM data correlates well with glycemic 

control over 3 months (88). CGM systems can also play a vital role in enhancing the 

utility of HbA1c in an individual patient by providing an average glucose and predicted 

HbA1c or the glucose management indicator (GMI), which can be used to assess the 

individual-specific variability of measured laboratory HbA1c. This can be used for 

better interpretation of future HbA1c values as the relationship between average 

glucose and HbA1c in a patient tends to remain constant. 

CGM metrics as outcome measures 

Percent TIR is the major metric obtained from CGM. In a study by Vigersky et al, 

%TIR obtained from CGM and SMBG from 18 studies showed a good correlation with 

HbA1c, using linear regression analysis and Pearson correlation coefficient (R = −0.84; 
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R2 = 0.71). Every 10% absolute change in %TIR corresponded to 0.8% change in 

HbA1c (89). Similarly, Beck et al demonstrated an excellent inter-correlation among 

CGM metrics, and a moderate correlation with HbA1c, with every 10% increase in TIR 

corresponding to an approximate 0.6% reduction in HbA1c (90).  

Recent studies have also demonstrated association of %TIR with diabetic 

complications. For instance, Beck et al used SMBG data of type 1 diabetes patients 

from the DCCT trial to study the association of TIR with microvascular complications. 

Mean TIR correlated with mean HbA1c, with a coefficient of -0.79. TIR values were 

significantly lower, and mean glucose and hyperglycemic metrics were significantly 

higher in individuals with retinopathy and microalbuminuria compared to individuals 

with no complications. Every 10% reduction in TIR translated into a 64% and 40% 

increase in hazard for developing retinopathy and microalbuminuria respectively (91). 

Similarly, Lu et al observed an inverse relationship between presence of diabetic 

retinopathy and %TIR obtained from 3-day CGM studies in 3262 type 2 diabetic 

patients, which persisted after adjustment for relevant factors including HbA1c and GV 

metrics, underlining the relevance of TIR as an outcome measure in practice as well as 

research (92).  

Mayeda et al observed that lower TIR and higher GMI were associated with symptoms 

of diabetic peripheral neuropathy in patients with long-standing DM and CKD (93). 

These findings were replicated in a recent systematic review by Raj et al, where a 10% 

increase in TIR was associated with reduction in albuminuria, severity of diabetic 

retinopathy and prevalence of diabetic peripheral neuropathy and cardiac autonomic 

neuropathy (94). Lu et al also observed a 6.4% lower risk of abnormal carotid intima-

media thickness with every 10% increase in TIR, suggesting a potential role in 

development of macrovascular complications as well (95). Beck et al noted that the 

occurrence of biochemical hypoglycemia at levels <70 mg/dl and <54 mg/dl in the 

DCCT dataset was associated with an increased risk of severe hypoglycemia in a 3-

month period (96). 

While HbA1c is a time-tested outcome measure in several longitudinal trials, TIR 

currently does not have unequivocal evidence as an outcome measure in longitudinal 

studies. However, with the association data available, TIR and CGM metrics may offer 

the same prognostic value, in addition to providing an intuitive and actionable measure 
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of the glycemic status, by providing the time spent in the preferred glucose range, hence 

representing important tools in advancing personalized management of diabetes. 

Various aspects of utility of CGM have been summarized in Table 3. 

Table 3. Current aspects of utility of CGM 

Utility Relevant 

CGM 

metrics 

Current 

equivalent 

clinical 

practice 

standards 

Remarks 

Assessment of short-term 

glycemic control 

Mean glucose 

% TIR, TAR, 

TBR 

SMBG 

FPG, PPPG, 

RPG 

CGM gives more 

information with 288 

readings in a day 

Assessment of long-term 

glycemic control 

GMI HbA1c GMI correlates well 

with HbA1c 

Assessment of glycemic 

variability including 

hypoglycemia 

SD, % CV SD, % CV 

from SMBG 

readings  

With number of glucose 

readings in CGM vastly 

outnumbering the 

SMBG readings, GV is 

better detected 

CGM metrics as outcome 

measures 

• Microvascular 

complications 

• Macrovascular 

complications 

• Cardiovascular and all-

cause mortality 

 

 

 

TIR 

TBR 

CV% 

 

 

 

 

 

HbA1c 

 

 

 

Data for long-term 

clinical complications 

outcome is still not 

studied fully. 

GMI: Glucose management indicator, TIR: Time-in-range, TAR: Time-above range, TBR: time-below-

range, SD: Standard deviation, CV: Coefficient of variation, FPG: Fasting plasma glucose, PPPG: 

Postprandial plasma glucose, RPG: Random plasma glucose 

 

As noted above, a significant majority of the studies involving correlating CGM metrics 

with HbA1c and complications have been carried out in type 1 diabetic individuals or 

in patients of Caucasian or African-American origin. We planned this cross-sectional 

study to study the relationship of CGM metrics, including GV indices with HbA1c in 
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Indian patients with type 2 diabetes. There are very few studies exploring glycemic 

variability measures, and enrolling patients on insulin. 

Meal patterns and dysglycemia 

An increased meal frequency has been conventionally associated with better metabolic 

profile in terms of decreased LDL-cholesterol, decreased obesity and waist 

circumference (97). This concept was derived from older epidemiological studies, 

which demonstrated beneficial effects of an increased meal frequency, usually higher 

than 4-6 meals per day. The results of the EPIC-Norfolk study published in 2001 

demonstrated a lower LDL-concentration in individuals with higher meal frequency 

(>6 time per day) as compared to a lower frequency of 1-2 times/ day. This difference 

was significant after adjustment for age, BMI, smoking, total energy intake, 

macronutrient composition and physical activity (98). The results of SEASONS study 

conducted in the United States was suggestive of a lower prevalence of obesity in 

individuals with meal frequency of > 4 times per day, even after adjustment for potential 

confounders. Skipping breakfast was also associated with a higher risk of obesity (99). 

The effect of meal frequency on the risk of developing diabetes is conflicting. Mekary 

et al, in their study including 46289 US women followed up for 6 years, demonstrated 

an increased risk of type 2 diabetes with irregular breakfast consumption, but no 

difference with regards to meal frequency (100). But in another study conducted by the 

author, including 29206 US men, an increased risk of T2DM was seen with a lower 

meal frequency (1-2 times per day, versus >3 times per day) and skipping breakfast 

(101). 

Several studies have explored the effect of meal patterns in diabetic patients. Ahola et 

al assessed meal patterns in 1007 type 1 diabetes patients. A regular meal pattern 

including breakfast was associated with an improved HbA1c. An increased meal 

frequency was associated with lower HbA1c, but a higher glycemic variability (102).  

The data in type 2 diabetic individuals has been conflicted. Thomsen et al assessed the 

effect of 3 versus 6 meals a day of isocaloric diet for 2 weeks in ten type 2 diabetic 

patients, followed by a cross-over. There was no significant difference observed in 

glucose metabolism or blood pressure with differing meal frequencies (103). 

Papakonstantinou et al demonstrated a reduction in HbA1c and post-OGTT plasma 
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glucose at 120 min in type 2 diabetic patients after 12 weeks of being on 6-meals per 

day, in comparison to an isocaloric diet with a frequency of 3 meals per day (104).  

Conversely, Kahleova et al demonstrated an improved fasting plasma glucose, C-

peptide, glucagon, oral glucose insulin sensitivity on a two meals per day dietary 

regimen (breakfast and lunch) when compared to six meals per day, in a randomized 

cross-over study. Both the regimens were hypoenergetic with similar caloric content 

(105). Hence, the effect of meal frequency on glycemic outcomes is a matter of debate, 

and maybe influenced by local dietary practices including macronutrient composition, 

caloric content, presence of complications like gastroparesis or hitherto unknown 

genetic or racial differences.  

Several studies have also explored the effect of diet composition and timing on 

glycemic control and variability. Overby et al found that fibre intake and a regular meal 

pattern was associated with blood glucose control. Additionally, the group with optimal 

control had a lower intake of added sugar and a higher intake of fruits and vegetables 

(106). Low carbohydrate high fat diet intake has been associated with improved GV 

measures (61,62).  

There is a dearth of studies in this area in Indian context, which is worthy of exploring 

in view of the possible differences that may arise from distinct racial background, local 

cultural practices and differing meal patterns. Additionally, available literature is 

inconsistent with regards to studies reporting variable relative contributions of fasting 

and postprandial glycemia towards overall glycemia, for which HbA1c has traditionally 

been the measure. Hence, we also aimed to assess patterns of dysglycemia in Indian 

type 2 diabetic patients using CGM which provides more exhaustive data for better 

interpretation. 
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AIMS AND OBJECTIVES 

Aim: 

Correlation of glycemic profile by continuous glucose monitoring with HbA1c and 

meal patterns in type 2 diabetic individuals. 

Objectives: 

Primary objective: 

To assess correlation of fasting and post prandial glycemia, measures of glycemic 

variability (standard deviation, % coefficient of variation) with HbA1C  

Secondary objectives: 

To study the correlation of average blood glucose by CGMS with HbA1C 

To study the correlation of % time in range, hypoglycemia and hyperglycemia, with 

HbA1C 

To study the relation of CGMS metrics in relation to different meal patterns 
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MATERIALS AND METHODS 

Study setting 

This was an observational study conducted in Department of Endocrinology & 

Metabolism at AIIMS Jodhpur. 

Study design 

Prospective observational study 

Study participants 

Patients with type 2 diabetes presenting to Endocrinology & Metabolism and Medicine 

OPD at AIIMS Jodhpur 

Inclusion criteria 

- Type 2 diabetes patients aged 30-70 years  

Exclusion criteria 

- Type 1 diabetes  

- Pregnancy 

- Acute significant intercurrent illness 

- Use of drugs like steroids, antipsychotics, calcineurin inhibitors 

- Severe anemia Hb < 6 g/dl 

- Hemoglobinopathies 

- Comorbidities: chronic kidney disease, chronic liver disease, heart failure, 

malignancy 

- Patients on alpha glucosidase inhibitors and meglitinides 

- Known hypersensitivity to CGMS skin patch 

- Not willing to consent 

Sampling  

Patients presenting to the departments of Endocrinology & Metabolism and Medicine 

at AIIMS Jodhpur, fulfilling the inclusion criteria were consecutively enrolled into the 

study in the study duration, after being explained about the study and obtaining due 

informed consent. 
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Sample size 

The sample size was calculated from the study done by Kang et al. Assuming a 

proportional contribution of 0.45 of post prandial glucose to total hyperglycemia in 

Type 2DM patients with HbA1c between 7-9% and precision of about 90%, with 

clinically significance level of 0.05, a sample size of 95 participants were planned to be 

enrolled for the study. The sample size was calculated using nMaster version 2. 

However, the unanticipated COVID-19 pandemic during the study period led to 

compromised recruitment for several months. By the end of the study period (December 

2021), we were able to recruit 56 patients in the study, as opposed to the planned 95 

patients. 

Data collection  

Patients enrolled into the study underwent a detailed baseline clinical evaluation, 

including assessment of comorbidities and complications, treatment history, and 

clinical examination. Dietary assessment was also done at baseline with appropriate 

advice. Baseline investigations were done, including hemogram, liver and kidney 

function tests, HbA1C, lipid profile, urine routine and microalbumin, 

electrocardiogram and a fundus examination. 

Laboratory samples were processed in the Department of Biochemistry. HbA1c was 

measured with in Beckman Coulter analyzer by a latex agglutination inhibition assay 

and determining absorbance at 700 nm, where absorbance is inversely proportional to 

the concentration of HbA1c in the test sample. Total Hb was separately determined, 

and % HbA1c was derived. Calibration was done with HbA1c calibrator (Cat # 

OSR6192), with calibrator assigned values being traceable to the DCCT via the master 

equation developed by the NGSP and IFCC. The dynamic range of HbA1c in this assay 

extended from 2.6% to the concentration of calibrator 6, approximately corresponding 

to 14.5%. Manufacturer-provided parameters include a within-run precision of ≤ 3% 

CV and total precision of ≤ 4% CV. 

In the second half of the study period, HbA1c determination was done with the Bio-

Rad VARIANT II Hemoglobin A1c program using ion exchange high performance 

liquid chromatography (HPLC) by measuring change in absorbance at 415 nm followed 

by an additional filter at 690 nm for correction for background absorbance. The results 
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were traceable to the reference methods of both the NGSP and IFCC, with the 

reportable range for HbA1c for the assay being 3.1-18.5%. Precision parameters 

provided by the manufacturer in a normal patient included a within-run, between-run 

and between-day CV of 0.9%, 0.64% and 1.15% respectively. Similarly, in diabetic 

patients, the parameters were 0.59%, 0.46% and 1.15% respectively.  

Continuous glucose monitoring was done with Medtronics iPro 2 CGMS device and 

Enlite sensor. The CGM setup included the iPro2 recorder with accompanying charging 

dock, USB cable and adapter. Patients were asked about daily activities and sleeping 

position to select an appropriate site for sensor insertion. Enlite sensor was inserted 

with a serter by trained investigators, typically on the anterior abdominal wall after part 

preparation followed by protective adhesive dressing. Alternative sites included lower 

back and upper buttocks, avoiding sites of insulin injection and the two-inch 

periumbilical area. Components of the CGM system and patient application have been 

shown in Figure 1 and 2 respectively. 

 

Figure 1. Components of the CGM system 

 

Remarks- a: Adhesive dressing, b: Enlite sensor, c: Serter, d: iPro2 recorder, e: Charging dock 

 

 

b 

e  

a  

 c  d 
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 Figure 2. Application of Enlite sensor and iPro2 recorder on abdominal wall 

 

 

The sensor is capable of measuring interstitial glucose every 5 minutes, producing upto 

288 values per 24 hours. Manufacturer-provided specifications of the Enlite sensor 

include an overall mean absolute relative difference (MARD) of 11% (SD 13.3), 

calculated as an average of the difference between sensor glucose and BG meter 

readings, and a median ARD of 6.9% when compared to the SMBG reference. The 

MARD values for BG ranges of 40-80, 81-120, 121-240, 241-400 mg/dl were 11.7%, 

12.3%, 9.2% and 7.6% respectively. Clarke’s error grid analysis revealed that 97.7% of 

values were in zones A and B, achieving the threshold for clinical acceptability. The 

lowest percentage of 88.3% was seen in the 40-80 mg/dl range, while it was exceeding 

97% in rest of the specified BG ranges. 

Patients were also required to do self-monitoring of fingerstick blood glucose by 

glucometer. The first BG reading was taken at least 2 hours after sensor insertion to 

allow time for the sensor to start functioning. This was followed by BG charting at least 

4 times a day, with at least one BG reading every 12 hours for calibration of sensor 

data. The SMBG timings typically included preprandial BG ± 2 hours after a major 
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meal and between 2-4 am during the duration of CGMS study. BG monitoring was done 

uniformly with a common Ypsomed Mylife PuraX glucometer. Manufacturer 

specification for the glucometer performance includes compliance with the ISO 

15197:2013 standards, with 100% of the values falling within ± 15 mg/dL at glucose 

concentration < 100 mg/dL and ± 15 % at glucose concentration ≥ 100 mg/dL as well 

as 100% coverage in the consensus error grid analysis. Precision parameters include a 

SD of ≤ 1.5 mg/dL at glucose concentration < 100 mg/dL and CV ≤ 2.0 % at glucose 

concentration ≥ 100 mg/dL. 

Patients also received an event log sheet to document timing and details of meals, 

SMBG values, timing and dose of insulin (if applicable), and details of exercise. A 

detailed meal log was taken as meal patterns vary significantly across the country, with 

both three and two major meals/ day patterns prevalent due to occupational or socio-

cultural reasons. 

Patients were briefed to continue usual daily routine with intermittent checking of 

sensor site to ensure proper placement and watch for skin reactions. CGMS profile was 

assessed for minimum of 3 days at baseline in all patients. The iPRO2 sensor and 

recorder were removed after the duration of the study and report was generated via the 

CareLink software after entering relevant SMBG and meal timing data. Data was 

included for analysis if there was atleast one successful 24-hour profile with no more 

than 120 min gap. Glycemic variability parameters were calculated using the 

EasyGVTM software, a custom software in the form of an excel workbook. Workflow 

of the study is shown in Figure 3. 
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Figure 3. Workflow of the study 

 

 

 

 

Variables obtained from CGMS 

• Average glucose 

• Glucose management indicator (GMI) 

• Time-in-range (TIR)- % of readings and time spent in the range of 70-180 mg/dl 

• Time above range (TAR) 

• Level 1 TAR: % of readings and time spent between 181-250 mg/dl 

• Level 2 TAR: % of readings and time spent >250 mg/dl 

• Time below range (TBR) 

• Level 1 TBR: % of readings and time spent between 54-69 mg/dl 

• Level 2 TBR: % of readings and time spent < 54 mg/dl 

• Area under the curve (AUC) parameters- calculated with atleast 48 hours of 

continuous CGM data (pictorial representation in Figure 5) 

• Total hyperglycemia: Area under the curve above glucose levels of 100 

mg/dl (AUC- total) 

Excluded patients 
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• Postprandial hyperglycemia: incremental AUC above preprandial 

glucose levels, 0 to 4 h after major meals (AUC-PP) 

• Fasting hyperglycemia (AUC-F): Calculated as the difference between 

total hyperglycemia and postprandial hyperglycemia, AUC-F= (AUC-

total)- (AUC-PP) 

• Contribution of postprandial hyperglycemia to total hyperglycemia was 

calculated as (AUC-PP) * 100/ (AUC-total)  

• Contribution of fasting hyperglycemia to total hyperglycemia was 

calculated as (AUC-F) * 100/ (AUC-total)  

• Others: 

• Peak glucose 

• Nadir glucose 

• AUC above limit 

• AUC below limit 

• Nocturnal glucose: mean AUC between 2-4 am 

• Measures of glycemic variability 

• Standard deviation 

• % Coefficient of variation 

• MAGE (mean amplitude of glycemic excursions) 

• CONGA 

• MODD 

• ADRR 

• LI 

• J-INDEX 

• LBGI, HBGI 

• GRADE%- euglycemia, hypoglycemia, hyperglycemia 



36 
 

A sample CGM report has been shown in Figure 4. 

Figure 4. Sample CGM report (Ambulatory glucose profile) 

 

 

 

 

TIR 

GMI (eA1c) 
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Figure 4. Sample CGM report (Ambulatory glucose profile)  

 

 

 

 

 

 

SD 
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The methodology for calculation of AUC parameters has been diagrammatically 

represented in Figure 5. 

 

Figure 5. Methodology for calculation of AUC parameters 

 

 

 

AUC-total 

AUC-PP 
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Statistical analysis 

Analysis was done using SPSS version 23. 

Data was assessed for normality using Kolmogorov Smirnov test, with normality 

assumed at p value > 0.05. Normally distributed numerical data was expressed as mean 

± standard deviation, whereas median (IQR) was used for data with a non-Gaussian 

distribution.  Categorical data was expressed as n (percentage). Non-parametric test like 

Mann-Whitney U test was used for comparison of numerical variables between two 

groups, whereas Kruskal-Wallis test was for comparison of >2 groups, with statistical 

significance at p< 0.05. Chi-square test or Fisher’s exact test were used to compare 

categorical variables as appropriate, with statistical significance at p value < 0.05.  

Correlation between variables was assessed using Spearman’s ρ analysis. ROC curve 

analysis was used to assess diagnostic power of GV indices to predict hypoglycemia, 

expressed as AUC (area under the curve) with 95% confidence interval. Youden’s index 

was used to arrive at optimum diagnostic cut-offs with adequate sensitivity and 

specificity. 
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RESULTS 

All type 2 diabetes patients aged 30-70 years presenting to the OPDs of Departments 

of Endocrinology and Medicine at All India Institute of Medical Sciences, Jodhpur were 

screened for inclusion into the study. A total of 104 patients were screened for inclusion 

into the study. Forty-eight patients were excluded: 14 patients were on alpha 

glucosidase inhibitors, 4 patients were on meglitinide therapy, 8 patients had clinical 

suspicion of latent autoimmune diabetes in adults (LADA), 5 patients had clinical 

suspicion of maturity onset diabetes of the young (MODY), 12 patients did not consent 

for continuous glucose monitoring, and 5 patients were not on stable anti-

hyperglycemic therapy, and were not willing for follow-up. Overall, 56 patients 

satisfying the inclusion criteria were included in the study after obtaining consent. 

The patients included in the study underwent a detailed history taking and clinical 

examination. Continuous glucose monitoring was carried out with Medtronic iPro 2 

CGMS device and Enlite sensor in all the patients for a minimum of 48 hours. Four 

patients had sensor failure (n=1) and sensor malfunction (n=3) leading to inadequate 

recordings. A total of 52 patients were included in the final analysis. Details of patient 

recruitment have been summarized in Figure 6. 
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Figure 6. Recruitment of patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations- LADA: Latent autoimmune diabetes in adults, MODY: Maturity 

onset diabetes of the young 

 

 

Total patients 

screened: 104 

Total patients recruited: 56 

Detailed history taking, clinical 

examination, biochemical 

investigations and continuous 

glucose monitoring with 

Medtronic iPro2 and Enlite sensor 

 

Excluded: 

On alpha-glucosidase (n= 14) or 

meglitinide therapy (n= 4) 

Clinical suspicion of LADA (n= 8) or 

MODY (n= 5) 

Not consenting for CGM (n= 12) 

Not on stable antihyperglycemic 

therapy for 3 months (n= 5) 

Total number of patients included 

in final analysis: 52 

Excluded 

Sensor failure (n=1) 

Sensor malfunction (n=3) 
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Baseline characteristics 

 

Demographic profile 

 

A total of 52 patients were included for analysis at the end of the study. Males 

comprised 55.7% (n=29) of patients, while females comprised 44.23% (n=23) of 

patients.  Majority of the patients were in the 45-60 year age group (67.3%, n=35). 

Mean age of presentation was 52.62 (7.51) years. The age and gender distribution have 

been represented in Figure 7. 

 

Figure 7. Age and gender distribution of patients in the study population 
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Baseline clinical characteristics 

 

Mean age of onset of diabetes was 44.92 (8.34) years, and median duration of diabetes 

was 6.5 years (IQR: 2-11). Baseline clinical characteristics of the patients have been 

summarised in Table 4. 

Table 4. Baseline clinical characteristics of the study population 

Baseline clinical characteristics Mean  SD/ Median 

(IQR)/ n (%) 

Age (years) 52.6  7.5 

Males, n (%) 29 (55.7) 

Age of onset of DM (years) 44.9  8.3 

Duration of DM (years) 6.5 (2-11) 

Family history of DM, n (%) 34 (65.4) 

Smoking, n (%) 5 (9.6) 

Oral tobacco, n (%) 5 (9.6) 

Alcohol consumption, n (%) 7 (13.5) 

BMI (kg/m2) 26.09 (24.21- 30.31) 

Waist circumference/ hip circumference (ratio) 

Total study population (n= 52) 

Males (n= 29) 

Females (n= 23) 

 

0.95  0.07 

0.96  0.07 

0.94  0.08 

Comorbidities, n (%) 

• Hypertension 

• Dyslipidemia 

• Obesity (BMI: ≥25 kg/m2) 

 

20 (38.5) 

47 (90.4) 

35 (67.3) 

Microvascular complications, n (%) 

• Neuropathy 

• Nephropathy 

• Retinopathy 

34 (65.4) 

27 (51.9) 

14 (26.9) 

6 (11.5) 

Macrovascular complications, n (%) 

• CAD 

• Cerebrovascular disease 

6 (11.5) 

5 (9.6) 

1 (1.9) 



44 
 

Other complications, n (%) 

• Chronic Charcot osteoarthropathy 

• Adhesive capsulitis of shoulder joint 

• Cheiroarthropathy 

 

2 (3.8) 

9 (17.3) 

7 (13.5) 

Data expressed as mean (SD), median (IQR) or n (percentage) as appropriate (Normality 

assessed using Kolmogorov-Smirnov test) 

Abbreviations- BMI- Body mass index, CAD- Coronary artery disease 

All the patients in the study population were on oral hypoglycemic agents, while seven 

patients were on insulin (13.5%). Patients on alpha glucosidase inhibitors and 

meglitinides were excluded before the study. Most common oral hypoglycemic agent 

used was metformin (98.1%, n=51), followed by sulfonylureas (86.5%, n=45), DPP-4 

inhibitors (53.8%, n=28), thiazolidinediones (9.6%, n=5) and SGLT2 inhibitors (7.7%, 

n=4). None of the patients were on GLP-1 analogues. Of the seven patients on insulin, 

five patients were on pre-mix insulins while two patients were on basal insulin. The 

pattern of anti-diabetic agents in the study population has been represented in Figure 8. 

 

Figure 8. Profile of anti-diabetic agent use in the study population 

 

Abbreviations- GLP-1: Glucagon-like peptide-1, DPP-4: Dipeptidyl peptidase-4, 

SGLT-2: Sodium glucose cotransporter-2 
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Majority of the patients in the study were obese (67.3%) or overweight (17.3%) by the 

Asian thresholds for BMI categorization. The proportions of various BMI categories in 

the study population have been represented diagrammatically in Figure 9. 

 

Figure 9. Distribution of BMI categories in the study population 

 

 

The mean waist to hip circumference ratio (WHR) in overall study population was 0.95 

(0.07), with values of 0.96 (0.07) and 0.94 (0.08) in males and females respectively. 

91.3% (n= 21) of females had a waist circumference of ≥ 80 cm, while 75.8% of males 

had waist circumference of ≥ 90 cm. 

Majority of patients in the study population had one or more patterns of dyslipidemia 

(90.4%, n=47). Most common form of dyslipidemia observed in the study population 

was low HDL-C defined as HDL-C< 40 mg/dl in males and <50 mg/dl in females 

(71.4%, n=35). This was followed by increased LDL, defined as LDL-C≥ 100 mg/dl 

(57.7%, n=30) and increased triglycerides defined as TG ≥ 150 mg/dl (38.5%, n=20).  

Additionally, combined dyslipidemia patterns were also prevalent. Increased LDL and 

TG were seen in 32.69% (n= 17) of the patients. A combination of increased LDL+ low 

HDL and increased TG + low HDL was each seen in 32.65% (n= 16) of patients.  All 

the three parameters were deranged in 22.45% of patients (n= 11). The proportions of 

different patterns of dyslipidemia are shown in Figure 10.  
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Figure 10. Dyslipidemia patterns in the study population 

 

 

The proportion of patients in the study population stratified as per LDL-C (<100 mg/dl, 

100-130 mg/dl, >130 mg/dl) and TG levels (<150 mg/dl, 150-250 mg/dl, >250 mg/dl) 

has been shown in Figure 11. 

 

Figure 11. LDL-C and TG levels (mg/dl) in the study population 

 

Abbreviations- LDL-C: Low density lipoprotein cholesterol TG: Triglycerides 
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Diabetic complication profile in the study population 

 

A total of 65.4% (n=34) patients in the study had one or more microvascular 

complications, while 11.5% (n=6) had macrovascular complications of diabetes. The 

relative proportions of the types of complications have been summarised in Table 1. 

While peripheral neuropathy was the most common microvascular complication 

(51.9%, n=27), evidence of nephropathy was present in 26.9% of patients (n=14), either 

in the form of microalbuminuria (21.2%, n=11) or eGFR< 60 ml/min/1.73 m2 (7.7%, 

n=4). The breakdown of eGFR and albuminuric categories in the study population has 

been represented in Figure 12 and 13 respectively. Median eGFR of the study 

population was 99 (83- 106) ml/min/ 1.73 m2. 

 

Figure 12. eGFR categories in the study population 
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Figure 13. Albuminuric categories in the study population 

 

 

Diabetic retinopathy (DR) was present in 11.5% of patients (n=6), four patients had 

moderate NPDR, while two patients had proliferative DR. The relative proportions of 

the retinopathy have been represented in Figure 14. Diabetic macular edema was 

apparent in three patients, two of whom had clinically significant macular edema. 

 

Figure 14. Retinal findings in the study population 

 

Remarks: Macular edema in three patients, two of whom had CSME 
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Biochemical parameters of the study population 

 

Biochemical assessment in the recruited patients included HbA1c, lipid profile, liver 

and renal function tests, urine routine microscopy and urine microalbumin creatinine 

ratio. Pertinent biochemical parameters in the study population have been summarised 

in Table 5. 

Table 5. Biochemical parameters in the study population 

Biochemical parameters Mean  SD / Median (IQR) 

HbA1c (%) 8.75 (7.65- 10.96) 

Urea (mg/dl) 23.5 (18- 26.5) 

Creatinine (mg/dl) 0.9  0.2 

ALT (IU/L) 26.8 (18- 43) 

AST (IU/L) 23 (18- 31) 

Lipid profile (mg/dl) 

• Total cholesterol 

• LDL- cholesterol 

• HDL-cholesterol 

• Triglycerides 

 

158.56  47.12 

106.42  40.23 

38.51  8.89 

128 (110- 232.5) 

Data expressed as mean (SD)/ median (IQR) as appropriate (Normality assessed using 

Kolmogorov-Smirnov test) 

Abbreviations- ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, LDL-C: 

Low density lipoprotein cholesterol, HDL-C: High density lipoprotein cholesterol 

 

Continuous glucose monitoring (CGM) parameters in the study 

population 

 

CGM was done with Medtronics iPro2 device and Enlite sensor for a minimum of 48 

hours in all patients (n=56). Calibration was done with SMBG with Ypsomed Mylife 

PuraX glucometer as described in materials and methods. One patient had sensor failure 

and three patients had sensor malfunction leading to inadequate readings. CGM data 

was analysed in the remaining 52 patients. Report was generated via the Carelink 

software after the completion of CGM study.  
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CGM validity parameters 

 

CGM validity parameters were satisfactory with glucometer cross-calibration. These 

have been summarised in Table 6. 

 

Table 6. CGM validity parameters 

CGM validity parameters Median (IQR) 

Number of CGM readings 831 (802-1069) 

Number of valid calibrations 13 (12-16) 

Mean absolute difference (MAD- %) 9.75 (7.2-12.65) 

Correlation 0.9 (0.86-0.95) 

Data expressed as median (IQR) 

 

Baseline CGM parameters 

 

Pertinent baseline CGM parameters of the study population have been summarised in 

Table 7. 

Table 7. Baseline CGM parameters of the study population 

CGM parameter Median (IQR) 

Average glucose (mg/dl) 170.5 (140.5-216.5) 

Glucose management indicator (GMI, %) 7.6 (6.5-9.2) 

Hemoglobin glycation index (HGI, %) 1.15 (0.75-2.05) 

Peak glucose (mg/dl) 314 (243- 375) 

Nadir glucose (mg/dl) 81 (60-94) 

Nocturnal glucose (mg/dl) 149 (117-188) 

Time-in-range (TIR, %) 59 (25-81) 

Time-above range (TAR, %) 39 (17-75) 

Level 2 TAR (%) 7 (0-29) 

Time-below-range (TBR, %) 0 (0-1) 

Level 2 TBR (%) 0 (0-0) 
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Mean AUC-total (24h) (AUC-total) (mg/dl/unit time) 23309 (12170-32715) 

Mean AUC-postprandial (AUC-PP) (mg/dl/unit time) 5669 (2840- 7083) 

Mean AUC-fasting (AUC-F)  

(mg/dl/unit time) 

13203 (9574- 27000) 

Postprandial contribution to total hyperglycemia (%) 24.43 (14.22-35.44) 

Fasting contribution to total hyperglycemia (%) 75.57 (64.56- 85.78) 

AUC above limit 17.8 (4- 46.05) 

AUC below limit  0 (0- 0.05) 

Data expressed as median (IQR) 

Remarks- AUC above limit: area under the curve above 180 mg/dl, AUC below limit: area 

under the curve below 70 mg/dl 

 

The distribution of patients in HGI categories has been shown in Figure 15. 

Figure 15. Distribution of HGI in the study population 

 

 

Out of the 52 patients, 42.3% (n=22) met the TIR target of ≥ 70%, whereas 84.62% 

(n=44) and 40.38% (n=21) had met targets of TBR of < 4% and TAR < 25% 

respectively. The relative proportions of patients achieving the CGM glycemic targets 

has been represented in Figure 16. 
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Figure 16. Proportions of patients meeting the CGM targets in the study 

population 

 

 

Eight patients (14.38%) had hypoglycemia detected on CGM in the form of TBR ≥ 4%. 

Of these eight patients, six had level 2 TBR ≥ 1% (11.5%), suggestive of significant 

hypoglycemia. Only two of the eight patients had hypoglycemic symptoms during the 

episodes. Hypoglycemia was not picked up in all these patients with the limited SMBG 

values alone. 
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Glycemic variability parameters 

 

Glycemic variability parameters of the study population have been summarised in 

Table 8. 

Table 8. Glycemic variability parameters of the study population 

Glycemic variability parameter Median (IQR) 

Standard deviation (SD, mg/dl) 45 (33.5- 52) 

Coefficient of variation (CV, %) 25.52 (19.97- 30.47) 

CONGA (mg/dl) 155.86 (125.67- 194.43) 

Lability index (LI) 3.65 (2.25- 4.83) 

JINDEX 51.85 (32.45- 75.25) 

MODD (mg/dl) 41.68 (31.13- 53.43) 

MAGE (mg/dl) 106.65 (82.33- 132.06) 

ADDR 26.13 (14.98- 40.02) 

MVALUE 20.55 (6.17- 44.89) 

MAG (mg/dl/h) 30.44 (24.99- 35.23) 

LBGI 2.43 (0.53-24.18) 

HBGI 9.68 (4.57- 17.74) 

GRADE 

• GRADE % euglycemia 

• GRADE % hyperglycemia 

• GRADE % hypoglycemia 

7.98 (4.25- 14.47) 

1.79 (0.524- 7.35) 

91.09 (81.83- 98.73) 

0.09 (0- 12.745) 

Data expressed as median (IQR) 

Abbreviations- CONGA: Continuous overlapping net glycemic action, MODD: mean of daily 

differences, MAGE: mean amplitude of glycemic excursions, ADDR: average daily risk range, MAG: 

mean absolute glucose, LBGI: low blood glucose index, HBGI: high blood glucose index, GRADE: 

Glycemic risk assessment and diabetes equation 

 

A total of 94.2% of the study population (n=49) had a CV% of < 36%. Only 6% (n=3) 

of the patients had a CV ≥ 36%, of which one patient was on insulin. Twenty-five (48.07 

%) of the patients had a CV > 26.4%, the cut-off derived by ROC curve analysis for 

CV% as a predictor of hypoglycemia (described later in the results). The proportions of 

patients in CV% ranges are represented in Figure 17.  
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Figure 17. Distribution of coefficient of variation (CV%) ranges in the study 

population 
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Correlation of CGM metrics with HbA1c  

The results have been summarised in Table 9. 

Table 9. Correlation of CGM metrics with HbA1c 

CGM metrics Correlation with HbA1c 

(Spearman’s ρ) 

p value 

Average glucose 0.764 < 0.001 

Glucose management 

indicator (GMI) 

0.775 < 0.001 

Time in range  - 0.722 < 0.001 

Time above range 0.746 < 0.001 

Time below range - 0.396 0.004 

Peak glucose 0.586 < 0.001 

Nadir glucose 0.541 < 0.001 

AUC above limit 0.707 < 0.001 

AUC below limit - 0.352 0.011 

Data expressed as Spearman’s ρ coefficient, statistical significance at p < 0.05 

Remarks- AUC above limit: area under the curve above 180 mg/dl, AUC below limit: area under the 

curve below 70 mg/dl 

 

In general, HbA1c showed a statistically significant correlation with all principal CGM 

metrics of average glycemia as well as hyperglycemia and hypoglycemia. HbA1c had 

a statistically significant positive correlation with metrics which serve as measures of 

hyperglycemia such as average glucose, GMI, TAR, peak glucose and AUC above 

limit.  

The relationship of HbA1c with average glucose (Spearman’s ρ= 0.764, p< 0.001) has 

been shown in Figure 18. 
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Figure 18. Correlation of average glucose with HbA1c 

 

 

HbA1c had a statistically significant negative correlation with time in range 

(Spearman’s ρ= -0.722, p< 0.001), shown in Figure 19. 

 

Figure 19. Correlation of TIR with HbA1c 
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HbA1c also had a negative correlation with hypoglycemic measures like TBR and AUC 

below limit. The relationship of HbA1c with time below range (Spearman’s ρ= -0.396, 

p= 0.004) is shown in Figure 20. 

 

Figure 20. Correlation of TBR with HbA1c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



58 
 

Correlation of measures of GV with HbA1c 

 

HbA1c had a variable relationship with different GV indices. The correlation 

coefficients and p values have been summarised in Table 10. 

Table 10. Correlation of HbA1c with GV indices 

GV parameters Correlation with HbA1c 

(Spearman’s ρ) 

p value 

SD 0.324 0.019 

CV % - 0.312 0.024 

CONGA 0.770 < 0.001 

LI 0.321 0.020 

JINDEX 0.720 < 0.001 

LBGI - 0.073 0.606 

HBGI 0.692 < 0.001 

GRADE 

• GRADE % hypoglycemia 

• GRADE % euglycemia 

• GRADE % hyperglycemia 

0.771 

- 0.042 

- 0.673 

0.327 

< 0.001 

0.807 

< 0.001 

0.052 

MODD 0.399 0.003 

MAGE 0.227 0.105 

ADDR 0.627 < 0.001 

MVALUE 0.426 0.002 

MAG 0.284 0.042 

Data expressed as Spearman’s ρ coefficient  

Abbreviations- SD: Standard deviation, CV: Coefficient of variation, CONGA: Continuous overlapping 

net glycemic action, LI: Lability index, LBGI: low blood glucose index, HBGI: high blood glucose index, 

GRADE: Glycemic risk assessment and diabetes equation, MODD: mean of daily differences, MAGE: 

mean amplitude of glycemic excursions, ADDR: average daily risk range, MAG: mean absolute glucose 

HbA1c had a statistically significant positive correlation with majority of GV indices 

like SD, CONGA, LI, JINDEX, HBGI, GRADE, MODD, ADDR, MVALUE and 

MAG. The relationship of HbA1c with SD (Spearman’s ρ=0.324, p= 0.019) is 

represented in Figure 21. 
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Figure 21. Correlation of SD with HbA1c 

 

HbA1c had a statistically significant negative correlation with CV%. (Spearman’s ρ= 

-0.312, p= 0.024), presented in Figure 22. 

 

Figure 22. Correlation of CV% with HbA1c 

 

 

HbA1c did not have a statistically significant correlation with other GV indices like 

LBGI, and MAGE. 



60 
 

Correlation of HbA1c with fasting and postprandial glycemia 

The burden of hyperglycemia in each patient was assessed using Area under the curve 

(AUC) analysis as detailed in the methods section. This was used to calculate total 

hyperglycemia (AUC-total), postprandial hyperglycemia (AUC-PP) and fasting 

hyperglycemia (AUC-F). The contributions of postprandial and fasting hyperglycemia 

to total hyperglycemia were expressed as a percentage. The parameters for the study 

population have been summarised in Table 11. 

Table 11. AUC parameters in the study population 

AUC parameter Median (IQR) 

AUC-total (mg/dl/unit time) 23309 (12170- 32715) 

AUC-PP (mg/dl/unit time) 5669 (2840- 7083) 

AUC-F (mg/dl/unit time) 13203 (9575- 27001) 

AUC-PP contribution to AUC-total (%) =(AUC-PP) * 

100/ (AUC-total) 

24.43 (14.22- 35.44) 

AUC-F contribution to AUC-total (%) =(AUC-F) * 100/ 

(AUC-total) 

75.57 (64.56- 85.78) 

Data expressed as median (IQR) 

Abbreviations: AUC- area under the curve 

 

HbA1c had a statistically significant positive correlation with total (AUC-total) and 

fasting hyperglycemia (AUC-F), whereas there was no correlation with postprandial 

hyperglycemia (AUC-PP). However, HbA1c had a statistically significant positive 

correlation with contribution of fasting hyperglycemia to total hyperglycemia, and a 

statistically significant negative correlation with contribution of postprandial 

hyperglycemia to total hyperglycemia. The correlation parameters have been 

summarised in Table 12. 
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Table 12. Correlation of AUC parameters with HbA1c 

AUC parameters Correlation with 

HbA1c (Spearman’s ρ) 

p value 

AUC-total (mg/dl/unit time) 0.705 < 0.001 

AUC-PP (mg/dl/unit time) 0.203 0.161 

AUC-F (mg/dl/unit time) 0.698 <0.001 

AUC-PP contribution to AUC-total (%) 

=(AUC-PP) * 100/ (AUC-total) 

- 0.447 0.001 

AUC-F contribution to AUC-total (%) 

=(AUC-F) * 100/ (AUC-total) 

0.447 0.001 

Data expressed as Spearman’s ρ coefficient, statistical significance at p< 0.05 

Abbreviations: AUC- area under the curve 

 

The relationship between HbA1c and relative contributions of postprandial and fasting 

hyperglycemia to total hyperglycemia have been represented diagrammatically in 

Figure 23 and 24 respectively. 

 

Figure 23. Correlation of HbA1c with contribution of postprandial 

hyperglycemia to total hyperglycemia 
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Figure 24. Correlation of HbA1c with contribution of fasting hyperglycemia to 

total hyperglycemia 

 

 

We explored this relationship further by comparing the relative contributions of 

postprandial and fasting hyperglycemia to total hyperglycemia across three tertiles of 

HbA1c divided as HbA1c <8% (n=18), 8-10% (n=16) and >10% (n=18), rounded off 

to the nearest whole number. Kruskal Wallis test was used for comparison, with 

statistical significance at p <0.05. The relative contribution of postprandial 

hyperglycemia gradually decreased, and the contribution of fasting hyperglycemia 

gradually increased with increasing HbA1c. This difference was more significant at 

HbA1c>10%. The findings have been summarised in Table 13. 
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Table 13. Comparison of AUC parameters of the study population across HbA1c 

tertiles 

 

AUC parameters 

HbA1c <8% 

(n=18) 

HbA1c 8-10% 

(n=16) 

HbA1c >10% 

(n=18) 

p 

value 

Median (IQR) Median (IQR) Median (IQR)  

AUC-total 11955 

(8991- 18312) 

20040  

(12047- 27264) 

35285  

(28585- 51733) 

<0.001 

AUC-PP 3409 

(1545- 6491) 

6111  

(3631- 7788) 

5361  

(3619- 7000) 

0.260 

AUC-F 9575  

(3765-11045) 

12663 (9502- 

19719) 

28909 (22993- 

42437) 

<0.001 

PP contribution to total 

hyperglycemia (%) 

33.39  

(17.63- 40.09) 

28.44  

(17.27- 46.69) 

16.11  

(10.22- 21.09) 

0.005 

Fasting contribution to 

total hyperglycemia (%) 

66.61  

(59.91- 82.37) 

71.56  

(53.31- 82.73) 

83.89  

(78.91- 89.78) 

0.005 

Data expressed as median (IQR) 

Statistical test used: Kruskal Wallis test, statistical significance at p < 0.05 

Abbreviations: AUC- area under the curve 

The findings have been shown in the form of box and whisker plots in Figure 25 and 

26. 

Figure 25. Contribution of postprandial hyperglycemia to overall hyperglycemia 

across HbA1c tertiles (p=0.005)  
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Figure 26. Contribution of fasting hyperglycemia to overall hyperglycemia 

across HbA1c tertiles (p=0.005)  

 

 

The medians of relative contributions of postprandial and fasting hyperglycemia have 

been represented in Figure 27. 

Figure 27. Contributions of fasting and postprandial hyperglycemia to total 

hyperglycemia across HbA1c tertiles 
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Similar trends were also observed across the three subgroups of TIR, divided as TIR 

<40% (n=19), 41-80% (n=18) and >80% (n=15). Using Kruskal Wallis test, with 

statistical significance at p <0.05, the relative contribution of postprandial 

hyperglycemia gradually increased, and the contribution of fasting hyperglycemia 

gradually decreased with increasing TIR%. This difference was more significant at TIR 

<40%. The findings have been summarised in Table 14. 

 

Table 14. Comparison of AUC parameters of the study population across TIR 

tertiles 

 

AUC parameters 

TIR<40% 

(n=19) 

TIR 40-80% 

(n=18) 

TIR >80% 

(n=15) 

p 

value 

Median (IQR) Median (IQR) Median (IQR)  

AUC-total 37854 

(32193- 51733) 

18312  

(15904- 24109) 

10697  

(8991- 11915) 

<0.001 

AUC-PP 5911  

(3619- 7481) 

6805 

(5800- 8765) 

2374 

(1173- 3409) 

<0.001 

AUC-F 31013 

(24647- 42437) 

12275 

(9575- 17201) 

8550 

(5041- 9822) 

<0.001 

PP contribution to total 

hyperglycemia (%) 

15.40  

(9.37- 18.07) 

33.39  

(29.5- 47.22) 

29.74  

(13.44- 40.09) 

<0.001 

Fasting contribution to 

total hyperglycemia 

(%) 

84.60  

(81.93- 90.63) 

66.61  

(52.78- 70.5) 

70.26  

(59.91- 86.56) 

<0.001 

Data expressed as median (IQR) 

Statistical test used: Kruskal Wallis test, statistical significance at p < 0.05 

Abbreviations: AUC- area under the curve 
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The medians of relative contributions of postprandial and fasting hyperglycemia across 

TIR subgroups have been represented in Figure 28. 

Figure 28. Contributions of fasting and postprandial hyperglycemia to total 

hyperglycemia across TIR subgroups 
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Subgroup analysis 

Impact of dietary patterns 

Majority of the patients consumed three major meals per day (88.5%, n=46), whereas 

11.5% (n=6) consumed two major meals a day. On comparison of pertinent findings 

among the two groups, HbA1c was found to be significantly higher in the three-meal 

per day subgroup. There were no statistically significant differences in TIR, %CV, and 

fasting and postprandial contribution to total hyperglycemia. The results have been 

summarised in Table 15. 

Table 15. Comparison of pertinent findings between the number of meal 

subgroups 

Parameters Two meals/day 

(n=6) 

Three meals/ day 

(n=46) 

p value 

Median (IQR) Median (IQR)  

HbA1c (%)  7.55 (6.6- 8.6) 9.05 (7.90- 11.40) 0.038 

TIR (%) 77.50 (60-88) 56.50 (25- 80) 0.152 

CV (%) 25.82 (22.27- 27.55) 25.48 (19.75- 30.71) 1.0 

PP contribution to total 

hyperglycemia (%) 

17.63 (9.93- 47.22) 24.47 (14.26- 34.42) 0.885 

Fasting contribution to 

total hyperglycemia (%)  

82.37 (52.78- 90.07) 75.53 (65.58- 85.74) 0.885 

Data expressed as median (IQR) 

Statistical test used: Mann-Whitney U test, statistical significance at p < 0.05 

Abbreviations- TIR: Time in range, CV: Coefficient of variation, PP: Postprandial 
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Insulin users versus non-users 

 

Majority of the patient were on oral antihyperglycemic therapy (86.5%, n=45), whereas 

13.5% (n=6) were on both insulin and OHAs. On comparison of pertinent findings 

among the two groups, HbA1c was found to be significantly higher in the insulin user 

subgroup. There were no statistically significant differences in TIR, %CV, and fasting 

and postprandial contribution to total hyperglycemia. The results have been 

summarised in Table 16 

Table 16. Comparison of pertinent findings between insulin users and non-users 

 

Parameters OHAs only (n=45) OHA+insulin 

(n=7) 

p value 

Median (IQR) Median (IQR)  

HbA1c (%) 8.5  

(7.3- 10.6) 

9.7  

(9.2- 12.8) 

0.049 

TIR (%) 67 

 (33- 82) 

25 

 (18- 57) 

0.159 

CV (%) 25.5  

(19.12- 29.78) 

28.57  

(22.86- 33.19) 

0.184 

PP contribution to total 

hyperglycemia (%) 

24.47 

 (13.44- 37.73) 

18.07  

(14.22- 28.73) 

0.605 

Fasting contribution to 

total hyperglycemia (%) 

75.73  

(62.27- 86.56) 

81.93 

 (71.27- 85.78) 

0.605 

 
Data expressed as median (IQR) 

Statistical test used: Mann-Whitney U test, statistical significance at p < 0.05 

Abbreviations- TIR: Time in range, CV: Coefficient of variation, PP: Postprandial 
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HbA1c subgroups 

 

We divided the patients into three subgroups on the basis of their HbA1c: HbA1c <8%, 

HbA1c 8-10%, and HbA1c >10% for comparison of relevant variables. There was no 

significant difference in gender distribution, BMI, waist to hip circumference ratio, 

smoking, alcohol intake and both microvascular, macrovascular complications between 

the tertiles. Among CGM parameters, average glucose, GMI, TAR increased 

significantly and TIR decreased significantly with increasing HbA1c. The median and 

IQR of TIR in the HbA1c subgroups has been represented diagrammatically as a box 

and whisker plot in Figure 29. 

 

Figure 29. TIR in the HbA1c subgroups 
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TBR was highest in the lowest tertile of HbA1c with a p value of 0.025. While there 

was no statistically significant difference in SD between the groups, CV% was lowest 

in the highest HbA1c tertile with a p value of 0.025. The median and IQR of CV% in 

the HbA1c subgroups has been represented diagrammatically as a box and whisker plot 

in Figure 30. 

 

Figure 30. CV% in the HbA1c subgroups 

 

 

 

 

 

 

 

 

 

 



71 
 

The categorical and numerical variables in the HbA1c subgroups have been 

summarised in Table 17 and 18 respectively. 

 

 

Table 17. Clinical and CGM characteristics in the HbA1c subgroups 

 

Parameters 
HbA1c <8% 

(n= 18) 

HbA1c  

8-10%  

(n=16) 

HbA1c >10% 

(n= 18) 

p value 

Males 7 (38.9) 11 (68.8) 11 (61.1) 0.184a 

Microvascular 

complications 
13 (72.2) 10 (62.5) 11 (61.1) 

0.750 a 

Macrovascular 

complications 
2 (11.1) 2 (12.5) 2 (11.1) 

0.999 b 

Microalbuminuria 4 (22.2) 4 (25) 3 (16.7) 0.913b 

Retinopathy 2 (11.1) 4 (25) 0 (0) - 

Neuropathy 9 (50) 7 (43.8) 11 (61.1) 0.588a 

CKD 6 (33.3) 5 (31.3) 3 (16.7) 0.498 b 

Insulin users 0 (0) 4 (25) 3 (16.7) - 

Smoking 0 (0) 3 (18.8) 2 (11.1) - 

Oral tobacco 1 (5.6) 4 (25) 0 (0) - 

Alcohol 0 (0) 4 (25) 3 (16.7) - 

TIR>70% 13 (72.2) 7 (43.8) 2 (11.1) 0.001 a 

TBR <4% 12 (66.7) 14 (93.3) 17 (94.4) 0.073 b 

TAR <25% 13 (72.2) 6 (37.5) 2 (11.1) 0.001 a 

Level 2 TBR > 1% 5 (27.8) 1 (6.3) 0 (0) - 

TBR > 4% or level 2 

TBR > 1% 
6 (33.3) 1 (6.3) 1 (5.6) 

0.06 b 

% CV ≥ 36 2 (11.1) 1 (6.3) 0 (0) - 

Data expressed as n (%) 

Statistical tests used- a: Chi Square test; b: Fisher’s Exact test (Freeman-Halton Extension). Statistical 

significance at p< 0.05 

Abbreviations- CKD: Chronic kidney disease, TIR: Time in range, TBR: Time below range, TAR: 

Time above range, CV: Coefficient of variation 
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Table 18. Clinical and CGM characteristics (numerical) in the HbA1c subgroups 

 

Parameters HbA1c <8% 

(n= 18) 

HbA1c 8-10% 

(n= 16) 

HbA1c >10% 

(n= 18) 

p value 

BMI 26.09  

(23.68- 30.04) 

25.20  

(24.63- 27.31) 

28.95 

(23.16- 30.85) 

0.311 

WC/HC ratio 0.94  

(0.9- 0.96) 

0.94  

(0.91- 1.01) 

0.97 

(0.94- 1.04) 

0.162 

GMI 6.45 

(5.6- 7.1) 

7.55 

(6.85- 8.4) 

9.70 

(8.5- 11.1) 

<0.001 

Average glucose 138 

(115- 157) 

170.5 

(150- 195.5) 

232.5 

(197- 273) 

<0.001 

SD 35.00 

 (27- 49) 

49.5 

(37- 56.5) 

46.5 

(41- 55) 

0.069 

CV% 27.04  

(23.13- 31.29) 

27.34  

(23.32- 31.53) 

20.55 

(16.41- 27.87) 

0.025 

TIR 82  

(68- 88) 

62.50  

(40.5- 78.5) 

18.5 

(2- 38) 

<0.001 

TAR 14 

 (1- 29) 

37.5  

(20.5- 55.5) 

81.5 

(59- 98) 

<0.001 

TBR 0.5 (0- 7) 0 (0- 1) 0 (0) 0.025 

Data represented as median (IQR) 

Statistical test used: Kruskal Wallis test, statistical significance at p< 0.05 

Abbreviations- GMI: Glucose management indicator, SD: Standard deviation, CV: Coefficient of 

variation, TIR: Time in range, TAR: Time above range, TBR: Time below range 
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TIR subgroups 

 

Patients were divided into three subgroups based on the TIR values obtained in CGM: 

TIR <40% (n= 19), 41- 80% (n= 18), and >80% (n= 15). Pertinent CGM characteristics 

were compared across the three subgroups. While GMI, average glucose, TAR 

decreased significantly with increasing TIR (p < 0.001), there was no significant 

difference in TBR in the subgroups. SD was significantly lower in the subgroup with 

TIR> 80%, but CV% was significantly lower in the subgroups with TIR <40% and TIR 

>40-80%. The median and IQR of SD and CV% in the TIR subgroups has been 

represented diagrammatically as box and whisker plots in Figure 31 and 32 

respectively. Other characteristics have been summarised in Table 19. 

Figure 31. SD in the TIR subgroups 
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Figure 32. CV% in the TIR subgroups

 

Table 19. CGM characteristics in the TIR subgroups 

Parameters TIR <40%  

(n=19) 

TIR 41- 80% 

(n=18) 

TIR >80% 

(n=15) 

p value 

GMI 9.8 (8.7- 11.1) 7.3 (7.1- 7.9) 6.4 (5.6- 6.6) <0.001 

Average 

glucose 
234 (203- 273) 162.5 (157- 180) 136 (115- 143) 

<0.001 

SD 49 (44- 63) 50 (41- 56) 32 (26- 34) <0.001 

CV% 22.27 (16.55- 

28.19) 

30.76 (26.11- 

35.03) 

23.78 (19.12- 

26.96) 

0.003 

TAR 82 (68- 98) 32.5 (22- 44) 6 (0- 18) <0.001 

TBR 0 (0) 0 (0-1) 0 (0- 2) 0.360 

Data represented as median (IQR) 

Statistical test used: Kruskal Wallis test, statistical significance at p< 0.05 

Abbreviations- GMI: Glucose management indicator, SD: Standard deviation, CV: Coefficient of 

variation, TAR: Time above range, TBR: Time below range 
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Predictors of hypoglycemia 

 

Eight patients (14.38 %) of the study population had evidence of hypoglycemia on 

CGM, defined as TBR ≥ 4%. The correlation of GV indices with TBR has been shown 

in Table 20. 

Table 20. Correlation of GV indices with TBR≥ 4% on CGM 

GV index Correlation with TBR 

(Spearman’s ρ) 

p value 

CV% 0.449 0.001 

SD 0.023 0.874 

CONGA - 0.424 0.002 

LI 0.011 0.938 

JINDEX 0.341 0.013 

LBGI 0.292 0.036 

GRADE - 0.416 0.002 

GRADE % hypoglycemia 0.443 0.007 

MODD - 0.067 0.638 

MAGE 0.059 0.678 

ADDR - 0.278 0.046 

MVALUE - 0.032 0.822 

MAG 0.018 0.901 

Data expressed as Spearman’s ρ coefficient, statistical significance at p< 0.05 

Abbreviations- CV: Coefficient of variation, SD: Standard deviation, CONGA: Continuous 

overlapping net glycemic action, LI: Lability index, LBGI: low blood glucose index, GRADE: 

Glycemic risk assessment and diabetes equation, MODD: mean of daily differences, MAGE: mean 

amplitude of glycemic excursions, ADDR: average daily risk range, MAG: mean absolute glucose 
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We compared the diagnostic ability of various GV indices in predicting hypoglycemia 

on CGM by ROC curve analysis. The results have been summarised in Table 21. 

Table 21. ROC curve analysis of common GV indices to predict TBR≥ 4% on 

CGM 

GV parameter AUC (95% CI) p value 

SD 0.455 (0.186- 0.723) 0.685 

CV% 0.793 (0.654- 0.931) 0.009 

LI 0.460 (0.199- 0.722) 0.722 

MAGE 0.489 (0.243- 0.734) 0.919 

Data expressed as AUC (95% CI), statistical significance at p< 0.05 

Abbreviations- SD: Standard deviation, CV: Coefficient of variation, LI: Lability index, MAGE: Mean 

amplitude of glycemic excursions 

 

The Receiver Operator Characteristic Curve for CV% was found to have a statistically 

significant area under the curve [AUC 0.793; 95% CI: 0.654-0.931] in predicting 

hypoglycemia on CGM, i.e., TBR ≥ 4% (p=0.09). Using Youden’s index method, the 

ideal cut-off for CV% was found to be 26.4%, where sensitivity was 100.0% and 

specificity was 63.6%. For the conventional cut-off of 36%, we found a sensitivity of 

37.5% and specificity of 97.7% (72). The ROC curve has been represented in Figure 

33. 
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Figure 33. ROC curve for CV% in predicting hypoglycemia on CGM 

 

SD however did not have a statistically significant diagnostic power to predict hypoglycemia  (AUC- 

0.455; 95% CI: 0.186- 0.723, p value 0.685). The ROC curve characteristics of SD have been shown in 

Figure 34. 

 

Figure 34. ROC curve for SD in predicting hypoglycemia on CGM 
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DISCUSSION 

We designed a prospective observational study conducted at Department of 

Endocrinology, AIIMS Jodhpur. The primary objective of the study was to assess 

correlation of fasting and post prandial glycemia and measures of glycemic variability 

(standard deviation, % coefficient of variation) with HbA1C. The secondary objectives 

of the study included assessment of correlation of average glucose, % time in range, 

hyperglycemia and hypoglycemia with HbA1c, and to study the relationship of CGM 

metrics with different meal patterns. 

A total of 56 patients with type 2 diabetes aged 30-70 years were recruited in the study 

and underwent a detailed clinical and biochemical assessment, including evaluation of 

comorbidities and complications. This was followed by continuous glucose monitoring 

with Medtronics iPro 2 CGMS device and Enlite sensor in all the patients for a 

minimum of 48 hours. Fifty-two patients who had adequate CGM readings as per pre-

specified criteria were included in the final analysis. 

Baseline characteristics 

Demographic characteristics 

Mean age of presentation in the study population was 52.62 (7.51) years, with mean 

age of onset of diabetes being 44.92 (8.34) years, and median duration of diabetes being 

6.5 years (IQR: 2-11). This is consistent with data suggesting an advancement in the 

age at development of diabetes by 1-2 decades in Indians compared to other ethnicities 

(107). The CURES study (Chennai Urban Rural Epidemiology Study) published in 

2006 revealed highest prevalence in age-groups of 30-39 and 40-49 years in Indians 

(108). This earlier age of type 2 diabetes in India by 1-2 decades is what is likely to 

further contribute to the future explosion of diabetes as life expectancy increases. 

Males comprised of 55.7% of patients. This might reflect the increased risk of diabetes 

in males reported in few large studies including the ICMR-INDIAB study (109). Other 

important socio-cultural factors that may play a role are the skewed sex ratio in the state 

of Rajasthan and better literacy and access to healthcare in males compared to females 

(110). The prevalence of smoking and alcohol intake was present in 9.6% of the study 

population, lower than the population estimates of 20% and 23% respectively (109). 
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This might be secondary to these practices being considered taboo culturally or 

tendency to adopt healthier lifestyle choices among patients presenting to hospitals for 

diabetes management. 

Comorbidities 

Hypertension was common in our study population, present in 38.5% of the patients in 

our study. Previous studies have shown a variable  prevalence of hypertension in Indian 

type 2 diabetic patients, ranging from 25.6% to 37.1% (111,112). Essential 

hypertension remains the most common cause of hypertension, with insulin resistance 

being one of the important mediators. Due to its widespread prevalence, it is worthwhile 

to screen for hypertension in all diabetic patients to institute early appropriate therapy 

as hypertension can contribute to renal and macrovascular complications of diabetes. 

Median BMI in our study populations was 26.09 kg/m2 (IQR 24.21- 30.31). 17.3% of 

the patients in the study had a BMI between 23- 24.9 kg/m2 (categorized erstwhile as 

overweight by the Asian thresholds for BMI), while as many as 67.3% of the patients 

had a BMI ≥ 25 kg/m2 (categorized as obese in Asian classification, and overweight in 

the universal thresholds for BMI). Additionally, 19% and 8% of patients were in BMI 

categories of 30-34.9 kg/m2 and ≥ 35 kg/m2 respectively. This is considerably higher 

than BMI ranges of 20.2- 24.3 (kg/m2) reported in the ICMR-INDIAB study which 

reported diabetes prevalence data from 15 states in India, but did not include data from 

Rajasthan (109). However, in the INSPIRED study by Anjana et al conducted 

specifically in 19084 type 2 diabetic individuals, mean BMI ranged from 24.4- 32.6 

kg/m2 in various phenotypic clusters of patients (113).  

Abdominal obesity was assessed as waist circumference and waist-to-hip ratio (WHR) 

in the study population. Mean WHR was 0.95 (0.07) in the study population. 91.3% 

(n= 21) of females had a waist circumference of ≥ 80 cm, while 75.8% (n= 22) of males 

had waist circumference of ≥ 90 cm, which are the adult Asian cut-offs for abdominal 

obesity. Hence, overall 82.69% of patients (n= 43) had a waist circumference beyond 

the gender-specific cut-offs. This underlines the widespread occurrence of abdominal 

obesity in our study population, consistent with the Asian Indian phenotype. 

Additionally, Jodhpur is one of the urbanized cities in Rajasthan with a relatively higher 

human development index (114). Higher socioeconomic status, carbohydrate and fat-
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rich native diets and sedentary lifestyles may have contributed to the common 

occurrence of obesity in the study population. 

Dyslipidemia was present in majority of our study population, with 90.4% of the study 

population having one or more forms of dyslipidemia. Most common form of 

dyslipidemia observed in the study population was low HDL (HDL-C< 40 mg/dl in 

males and <50 mg/dl in females), present in 71.4% of the patients, followed by 

increased LDL (LDL-C≥ 100 mg/dl) present in 57.7%, and increased triglycerides (TG 

≥ 150 mg/dl), present in 38.5% of the patients.  

Among the combined dyslipidemia patterns, dual parameter derangements (increased 

LDL and TG/ increased LDL + low HDL/ increased TG + low HDL) were almost 

equally prevalent, present in around 1/3 of patients each. All the three parameters were 

deranged (mixed dyslipidemia) in 22.45% of patients (n= 11). 

Mithal et al studied the prevalence of dyslipidemia in 5400 adult type 2 diabetes patients 

in 2014. Most common pattern of dyslipidemia was isolated low HDL-C (15.56% in 

males, 19.31% in females), followed by mixed dyslipidemia where all three parameters 

were deranged (13.96% in males, 19.36% in females). Other common patterns included 

isolated high LDL-C (13.18% in males, 11.35% in females), high TG (6.1% in males, 

2.57% in females), high LDL-C + high TG (12.99% in males, 5.74% in females), high 

TG + low HDL-C (10.83% in males, 12.93% in females), high LDL-C + low HDL-C 

(7.77% in males, 14.99% in females). 

Relative prevalence of various dyslipidemic patterns is likely to be variable in 

populations owing to differential prevalence of metabolic syndrome, socio-cultural 

determinants including diet and sedentary lifestyle, and local physician prescribing 

practices. However, the common underlying inference is that an overwhelming 

majority of Indian type 2 diabetics have one or more forms of dyslipidemia, of which 

low HDL-C is the most common. Mixed and combined two-parameter dyslipidemia 

patterns are also prevalent in Indian type 2 diabetic patients. The low HDL-C and high 

TG form components of the Asian Indian phenotype, and contribute to excess 

cardiovascular risk, in addition to LDL-C (115). 

. 
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Complications of diabetes 

A total of 65.4% patients in the study had one or more microvascular complications. 

Peripheral neuropathy was the most common microvascular complication present in 

51.9% of patients, assessed by symptom assessment and a neurological examination in 

our study. Widely variable diagnostic criteria have been used to diagnose diabetic 

neuropathy in larger studies, including neuropathy symptom scores, Michigan 

neuropathy screening instrument, tuning fork, pressure perception test and vibratory 

perception threshold. Hence, the resultant prevalence rates have also been highly 

variable, ranging from 9-64 % in clinic-based studies. Population-based studies have 

also shown variable prevalence, ranging from 26.1% in the CURES study to 60% in a 

rural Goa population by Vaz et al (116–118). Additionally, presence of confounders 

like neuropathy due to B12 deficiency in the setting of predominantly vegetarian diets 

and metformin use, alcohol use might have contributed to the higher prevalence of 

neuropathy in our study population. 

Nephropathy was the second most common microvascular complication, present in 

26.9% of patients, either in the form of microalbuminuria (21.2%) or eGFR< 60 

ml/min/1.73 m2 (7.7%), which is in concordance with the 19.7-50% prevalence rates of 

microalbuminuria in studies done in Indian referral centres for diabetes (118). The 

CURES-45 study by Unnikrishnan et al was a population based study and reported a 

26.9% prevalence of microalbuminuria in Indian type 2 diabetic patients in the (119). 

Similarly, 24.9% of type 2 diabetic patients had microalbuminuria after 10 years of 

follow-up in the landmark UKPDS study, with an annual incidence rate of 

approximately 2% per year after diagnosis of type 2 diabetes, underlining the 

importance of continued monitoring (120). 

Diabetic retinopathy was assessed by ophthalmological examination, and was present 

in 11.5% of patients (n=6), of which four patients had moderate NPDR and two patients 

had proliferative DR. Diabetic macular edema was apparent in three patients, two of 

whom had clinically significant macular edema. Retinopathy prevalence in our study 

population is similar to the reported prevalence of DR in Indian studies, ranging from 

7.3- 26.2% (121). The wide range of prevalence has been ascribed to usage of different 

methodologies used for screening like stereotactic retinal photography or 

ophthalmoscopic methods, the former being more sensitive for detecting retinopathy. 
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A total of 11.5% of the study participants also had macrovascular complications of 

diabetes, of which CAD was present in 9.6% and cerebrovascular disease in 1.9% of 

the patients. CAD screening was done clinically and with an electrocardiogram at rest. 

The prevalence of CAD in diabetic patients has ranged from 11.4-28% in clinic-based 

studies in India. Community-based studies have also revealed a variable prevalence 

ranging from 10.8- 32.3%. Similarly, prevalence of stroke in diabetic patients has been 

variably reported, ranging from 0.9 - 6.9% in Indian diabetic patients (118). The 

variable numbers in these studies including our study might be explained by 

methodological differences, apart from differences in socio-economic settings, duration 

and extent of control of diabetes, coexisting comorbidities like hypertension and 

dyslipidemia, and prevalence of confounders like smoking in the populations studied. 

Additionally, a small cohort of 52 patients in our study is not adequate enough to draw 

inferences about the prevalence of complications, which are based on larger, preferably 

community-based studies. 

Validity of CGM profiles 

Calibration was done with SMBG with Ypsomed Mylife PuraX glucometer as 

described in materials and methods. The median number of valid calibrations were 13 

(12- 16). The mean absolute difference (MAD) was 9.75% (7.2- 12.65). The 

International Consensus on Use of Continuous Glucose Monitoring guidelines 

recommend a mean absolute relative difference of up to 10%, with further lowering not 

having any additional benefit (122). The correlation of CGM values to SMBG was also 

0.9 (0.86- 0.95), suggestive of satisfactory performance. 

Baseline CGM parameters 

Median average glucose and GMI in the study population were 170.5 mg/dl (IQR 

140.5-216.5) and 7.55 (IQR 6.5-9.2) respectively. Additionally, median TIR, TAR and 

TBR were 59% (IQR 25-81.5), 39 % (IQR 17.5-75) and 0% (IQR 0-1) respectively. 

Important parameters have been summarised in Table 7.  

International consensus guidelines have recommended specific glycemic targets for 

CGM parameters for patients with type 2 diabetes (72). A TIR target of ≥ 70% was met 

in 42.3% of patients, whereas 84.62% and 40.38% could meet targets of TBR of < 4% 
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and TAR < 25% respectively. Additionally, 6% and 48.07% of the study population 

had a CV% of ≥ 36% and ≥ 26.4% respectively. The latter cut-off was derived by ROC 

curve analysis for CV% as a predictor for hypoglycemia in our study. 

Correlation of fasting and post prandial glycemia to HbA1c 

Area under the curve analysis was done for assessment of total (AUC-total), 

postprandial (AUC-PP) and fasting (AUC-F) hyperglycemic burden. For AUC 

calculation, we considered a BG in excess of 100 mg/dl as baseline, in accordance with 

previous studies. The rationale behind this cut-off is that a fasting BG of > 100 mg/dl 

is one of the ADA criteria for diagnosis of impaired fasting glucose (FPG: 100-125 

mg/dl), hence values > 100 mg/dl may be inferred to represent non-physiological 

hyperglycemia. Additionally, we defined postprandial period as a period 4 hours after 

the meal intake like in previous studies, and calculated postprandial glucose excursions 

above the preprandial glucose after major meals to derive AUC-PP (123). AUC-F was 

then calculated as the difference between AUC-total and AUC-PP. 

The median (IQR) of AUC-total, AUC-PP and AUC-F were 23309 (12170- 32715), 

56689 (2840- 7083) and 13203 (9575- 270001) respectively. Relative contributions of 

fasting and postprandial hyperglycemia towards total hyperglycemia were calculated 

as percentages. Median (IQR) for overall contributions of fasting and postprandial 

hyperglycemia in the study population were 75.57% (64.56- 85.78) and 24.43% (14.22- 

35.44) respectively.  

HbA1c had a statistically significant positive correlation with total (Spearman’s ρ= 

0.705, p value < 0.001) and fasting hyperglycemia (Spearman’s ρ= 0.698, p value < 

0.001), whereas there was no correlation with postprandial hyperglycemia (Spearman’s 

ρ= 0.203, p= 0.161). Hence, fasting hyperglycemia better correlated with HbA1c than 

postprandial hyperglycemia in our study population. 

Identification of the relationship between HbA1c with fasting and postprandial glucose 

has a manifold importance.  

• Postprandial glucose contributes to the total hyperglycemic burden. The role of 

ambient hyperglycemia (with HbA1c as a surrogate marker) in development of 
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diabetes-specific complications has been unequivocally demonstrated in 

landmark studies like DCCT-EDIC and UKPDS 

• Postprandial glucose has been demonstrated to have a stronger link to 

cardiovascular disease as well as all-cause mortality compared to fasting 

glucose (124–126) 

• Postprandial glucose also contributes to glycemic variability. This relationship 

of postprandial glucose with  glycemic variability and ambient hyperglycemia 

was limited to individuals with HbA1c < 7.5% in the study by Suh et al (127). 

Hence, postprandial glucose excursions may explain the glycemic variability 

and overall glucose exposure in individuals with relatively well-controlled 

diabetes, and may mediate the adverse outcomes associated with glycemic 

variability. 

• Identification of the predominant component of the overall hyperglycemia is 

important for tailoring therapies to address individual-specific patterns of 

dysglycemia.  

Earlier studies studying correlation of fasting and post-prandial glucose with HbA1c 

have shown variable results. Gupta et al reported a better correlation of fasting glucose 

to HbA1c (r= 0.685) as compared to postprandial glucose (r= 0.623) in 50 patients of 

type 2 diabetes with a mean HbA1c of 8.47  2.92% (128). Similar results were reported 

by Saiedullah et al in a study comprising of 347 diabetics (mean HbA1c 9.51  2.81 

%), 157 prediabetic individuals (mean HbA1c 6.36  0.94 %), and 196 non-diabetic 

individuals (mean HbA1c 5.8  0.55 %). Results showed that fasting glucose had a 

modestly higher correlation with HbA1c than postprandial glucose (129). However, 

several other studies have demonstrated better correlation of postprandial glucose to 

HbA1c than fasting glucose, and have advocated for control of postprandial glucose for 

better HbA1c outcomes (130,131). 

Ketema et al did a systematic review and metanalysis including 11 studies (n= 2403 

diabetic patients) to assess correlation of fasting and 2-hour postprandial glucose to 

HbA1c, with a purpose of identifying the better surrogate marker for use in the place 

of HbA1c in resource-limited settings. Out of the eleven studies, seven found a better 

correlation between PPG and HbA1c than FPG, whereas three studies revealed a 

stronger correlation between FPG and HbA1c than PPG. The remaining one study 
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found almost equal correlation coefficients for both FPG and PPG. Tests of 

heterogeneity revealed a Cochrane’s Q p< 0.001, and I2 was 94.3% and 93.2% for FPG 

and PPG respectively. Using the random effect model, the pooled correlation 

coefficient was 0.61 (95 % CI; 0.48–0.72) for FPG and 0.68 (95 % CI; 0.56–0.75) for 

2-hour postprandial glucose, underlining the importance of both fasting and 

postprandial glycemia to overall hyperglycemia, for which HbA1c is a surrogate 

marker. The authors concluded that correlation of postprandial glucose to HbA1c was 

better than fasting glucose, and suggested that additionally achieving PP glucose targets 

could translate into better HbA1c control (132).  

However, the meta-analysis included studies with isolated plasma glucose 

measurements obtained over 1-3 days, which is unlikely to reflect the true extent of 

diurnal glycemic burden. This is in contrast to CGM which provides exhaustive data 

points which is better for interpretation. Moreover, the relationship of FPG and PPG to 

HbA1c is different at various levels of glycemic control, hence a single correlation 

coefficient is unlikely to reflect the nature of the relationship. Additionally, the included 

studies had significant methodological differences and had data derived from multiple 

ethnicities, which needs to be considered before generalizing the results.  

Area under the curve (AUC) analysis of glucose readings can overcome the limitations 

of isolated blood glucose measurements. This analysis integrates both the severity of 

hyperglycemia (y-axis) and the time factor (x-axis), providing a truer reflection of the 

dynamics of glucose as well as glycemic burden. While earlier studies employed SMBG 

results to estimate fasting and postprandial hyperglycemic burdens, recent studies have 

used CGM to provide a finer and accurate estimation of fasting and postprandial 

hyperglycemia. 

In the seminal study by Monnier et al in 2003 which included 290 patients with type 2 

diabetes on stable medications (excluding insulin and acarbose), patients were divided 

into five quintiles of HbA1c (<7.3, 7.3- 8.4, 8.5-9.2, 9.3-10.2, >10.2%). Plasma glucose 

was determined 4 times in the day, and AUC above 110 mg/dl (upper limit of normal 

fasting plasma glucose by the ADA criteria at the time) was calculated as a measure of 

total hyperglycemia, and AUC above the fasting plasma glucose was used to determine 

the postprandial glycemia. The difference between the two was used to calculate the 

fasting hyperglycemia. Proportions of contributions of fasting and postprandial 
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hyperglycemia were then calculated by using the respective AUC parameters. 

Postprandial contribution was the highest in the lowest quintile of HbA1c (up to 70%), 

after which there was a progressive decrease in the postprandial contribution (yet 

accounting for nearly 30% of total hyperglycemia in the highest quintile), and a 

reciprocal increase in the fasting contribution to total hyperglycemia. This relationship 

was also confirmed in 20 patients with CGMS in the same study (4). The findings led 

to the suggestion that glucose intolerance in the post-meal periods was followed 

temporally by derangement of inter-prandial and fasting glucose with worsening 

glycemic control (133). This might mirror the sequence of events in the pathogenesis 

of diabetes, characterised by defects in insulin action and loss of early phase of insulin 

response initially, followed by progressive deterioration in β cell function with 

progression of diabetes.  

This was further studied in another study by Monnier et al in 2007, where CGM profiles 

of 140 type 2 diabetic patients were used to study the relationships. It was observed that 

dysglycemia occurred in a three-step process with worsening HbA1c, starting with loss 

of postprandial glucose control in HbA1c < 7%, followed by hyperglycemia in the pre-

breakfast and post-breakfast periods corresponding to the dawn and extended dawn 

phenomena in the intermediate HbA1c range of 7-8%, followed by deterioration of 

glycemic control in the nocturnal periods resulting in fasting hyperglycemia in those 

with HbA1c > 8% (8). 

This trend has subsequently been noted in other studies described in the review of 

literature, with some differences in the numerical values of contributions, and the 

HbA1c levels at which the transition occurs. Most of these discrepancies can be 

accounted by significant methodological differences. For instance, SMBG readings 

were using in earlier studies, while CGM tracings have become the norm in publications 

in the last decade. There have also been variations with respect to definitions of 

durations of post-prandial periods, selection of the inflection point beyond which 

postprandial glycemic excursion and AUC were calculated, and inconsistent definitions 

and terminologies. Additionally, some studies included patients on lifestyle 

modifications alone, while majority of the studies included patients on oral antidiabetic 

therapy only, which might have an important influence on the estimations. 
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We felt that there was an unmet need for data derived from Indian patients as this has 

important pathophysiological and therapeutic implications. Asian Indian phenotype has 

been well described in literature, with some glaring deviations from the natural history 

of type 2 diabetes in Caucasian populations. Asian Indians have an earlier onset of 

diabetes and at a lower BMI than Caucasians, tend to progress faster through 

prediabetes to diabetes, have higher abdominal adiposity and insulin resistance, and are 

at an increased risk of cardiovascular disease (134). Additionally, local dietary practices 

tend to differ significantly from the diets in West, even with widespread 

“Westernization” of the diet as a consequence of economic prosperity and 

globalization. Post meal glucose rise depends mainly on the quantity and quality of 

carbohydrates, which has a major sociocultural underpinning. Hence, this unique 

interaction of ethnicity-specific intrinsic risk factors in the development of diabetes 

with extrinsic factors like diet and lifestyle can potentially lead to important deviations 

and needs to be ideally studied as a distinct study. 

Hence, in addition to the correlation analysis, we performed further analysis to estimate 

the relative contributions of fasting and postprandial hyperglycemia to total 

hyperglycemia in HbA1c tertiles from the CGM profiles obtained in Indian type 2 

diabetic subjects. To the best of our knowledge, this is the first such study done in 

Indian patients. 

The findings of AUC parameters across the HbA1c tertiles (<8, 8-10, >10%) have been 

represented in Table 13 in the results section. As expected, AUC-total showed a gradual 

increase across the HbA1c tertiles (p< 0.001). AUC-PP and AUC-F also showed an 

increase across HbA1c tertiles, of which AUC-F was statistically significant. This is 

also an expected finding with worsening of hyperglycemia similar to published 

literature. However, it is worth noting that the increase in AUC-F was statistically 

significant (p< 0.001) as compared to AUC-PP (p= 0.260), suggestive of a 

disproportionate worsening of fasting hyperglycemia. In other words, AUC-PP did not 

increase as much as AUC-F did with worsening glycemic control. 

To further delineate this relationship, we calculated relative contributions of AUC-F 

and AUC-PP to AUC-total. The percentage contribution of postprandial hyperglycemia 

to total hyperglycemia gradually decreased, with a reciprocal increase in contribution 

from fasting hyperglycemia across the HbA1c tertiles, and this change was statistically 
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significant. These changes were more significantly apparent in the highest HbA1c 

tertile of >10%.  

Hence, the results of our study confirmed the trends in Indian patients, as observed in 

the seminal study by Monnier et al and the subsequent studies that have been done after 

that, i.e. the shift in the pattern of dysglycemia from postprandial towards fasting 

hyperglycemia with worsening of glycemic control. However, our findings deviate 

from the previous studies in some aspects.  

• Fasting hyperglycemia still remained the major contributor (66.61%, IQR 

59.91- 82.37) to the overall hyperglycemic burden even in the lowest HbA1c 

tertile (<8%), and subsequently continued increasing with increasing HbA1c. 

• The increase in contribution of fasting hyperglycemia was more significant in 

the last HbA1c tertile (HbA1c > 10%), increasing to as much as 83.89% (IQR 

78.91- 89.78). Hence, the postprandial contribution had decreased to a 

minimum of 16.11% (IQR 10.22- 21.09) in the last HbA1c tertile 

In contrast, in Monnier’s study, postprandial contribution was almost 70% of the total 

hyperglycemic burden in the lowest quintile (HbA1c< 7.3%), the two components had 

an almost equal contribution in the HbA1c quintile of 7.3-8.4%, and the fasting 

component of hyperglycemia became the predominant component at HbA1c> 8.4%. 

Also noteworthy is that postprandial hyperglycemia still contributed to almost one-third 

of the total hyperglycemia even in the highest HbA1c quintile (HbA1c >10.2%) (4). 

Hence, the patients in our study population tended to have higher burden of fasting 

hyperglycemia even at relatively well-controlled HbA1c, and the contributions of 

postprandial hyperglycemia remained lesser than those observed in previous studies at 

all levels of glycemic control. 

There can be a couple of reasons for the observed discrepancy. Riddle et al analysed 

seven-point SMBG profiles of 1699 type 2 diabetic patients with HbA1c > 7% on oral 

medications (mean HbA1c of 8.7%). They were subsequently evaluated after 24-28 

weeks of basal insulin versus other therapies like oral agents, prandial or premix insulin. 

In contrast to other studies, basal hyperglycemia remained the major contributor (76-

80%) in patients across the observed range of HbA1c at baseline, while it decreased to 

about 1/3 of total hyperglycemic burden after basal insulin therapy, and to 2/3 of total 
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burden after other therapies. Hence the authors concluded that the form of therapy can 

play a major role in determining contributions of basal and postprandial hyperglycemia 

rather than HbA1c levels alone (10).  

There were some significant methodological differences in the study by Riddle et al 

compared to previous studies. This included calculating AUC above 100 mg/dl as 

baseline, which may have resulted in overestimation of contribution of basal 

hyperglycemia. Authors calculated postprandial AUC as the rise above the prebreakfast 

values instead of considering individual premeal values to separately calculate prandial 

excursion for each meal. This is particularly relevant as prebreakfast values tend to be 

higher than pre-lunch or pre-dinner glucose values on account of dawn’s phenomenon, 

and hence using this as baseline for estimating the entire day’s postprandial excursions 

may result in an underestimation of prandial component of the hyperglycemia. 

Additionally, authors did not include patients with HbA1c< 7%, hence they couldnot 

drive conclusions about postprandial contributions in this particular subgroup.  

Not accounting for these differences, the fact that majority of our patients were on oral 

antihyperglycemic agents makes this a tangible explanation for the predominance of 

basal hyperglycemia in our study population. We could not do a subgroup comparison 

for insulin-treated and insulin-naïve patients due to the limited number of patients in 

the former category (n=6). 

Similarly, Peter et al did periodic venous sampling after three major meals in the 

daytime 52 type 2 diabetic patients to calculate respective contributions. While the 

initial study published in 2009 echoed the findings by Monnier et al, the authors 

republished the study in 2013 after recalculations to include extrapolated nocturnal data 

(11,135). The initial study estimated a PPG contribution ranging from 85.8% to 58.3%, 

based on the timing of the meal, in the lowest HbA1c subgroup (HbA1c< 7.3%). A 

recalculation resulted in a definite reduction in the relative contribution of PPG (43.5%) 

in the lowest HbA1c quintile (HbA1c< 7%). In other words, fasting hyperglycemia 

contributed to 56.5% of hyperglycemia even in the lowest HbA1c quintile. Comparison 

with CGM data in the same study revealed that SMBG and linear extrapolation resulted 

in overestimation of calculated excess hyperglycemia by atleast 18%. This highlights 

the importance of methodology and explains some of the discrepancies in the absolute 

numbers in studies. 
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Another important explanation for the higher fasting hyperglycemia in our study 

population might be the early β cell dysfunction seen in Asian Indian individuals. In a 

recent study by Staimez et al, normal-weighing Asian-Indians were found to have an 

elevated fasting plasma glucose compared to Pima Indians after adjustment for age and 

sex. Pima Indians were three times as insulin resistant as compared to Asian Indians, 

whereas Asian Indians had three times lesser insulin secretion compared to Pima 

Indians after adjustment for age, BMI and glycemic strata. In fact, the authors proposed 

two heterogenous phenotypes of type 2 diabetes risk: Type 2A characterized by insulin 

resistance with a wide β cell capacity with IGT as the dominant form of prediabetes, 

and type 2B characterized by a narrow β cell capacity and an impaired fasting glucose 

as the dominant form of prediabetes, which may get converted to diabetes with small 

increases in insulin resistance (136). This puts into spotlight the role of early β cell 

dysfunction and insulin secretory defect as the driver of pathogenesis of diabetes in 

Asian individuals.  

These findings were echoed in a recent study by Anjana et al, where Indian type 2 

diabetic individuals were divided into four clusters, namely cluster 1 (severe insulin 

deficient diabetes, SIDD, 26.2%), cluster 2 (Insulin resistant obese diabetics, IROD, 

25.9%), cluster 3 (Combined insulin resistant and deficient diabetes, CIRDD, 12.1%), 

cluster 4 (mild age-related diabetes, MARD, 35.8%). Thus insulinopenia was a 

prominent characteristic in almost 40% of type 2 diabetics in the study. The SIDD 

phenotype had the worst metabolic control with highest risk of retinopathy, followed 

by the CIRDD cluster. Additionally, the CIRDD cluster had the highest risk of 

nephropathy. Hence, understanding the pathophysiology and drivers of the disease also 

had important prognostic implications (113). 

In fact, Lim et al estimated relative contributions of fasting and postprandial 

hyperglycemia in a multiracial cohort of 100 patients including Malays, Chinese and 

Indians. They reported a fasting contribution of 54% in the lowest quintile of HbA1c 

(<7%), which gradually increased to 67% at HbA1c ≥ 10% (13). These findings give 

credence to the role of ethnicity in determining glucose contributions and may be one 

of the important reasons for such a finding in our study. 

Early β cell failure could have theoretically led to predominance of fasting 

hyperglycemia in our study population. However, in the absence of assessment of 
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objective measures of β cell function and insulin resistance in our study, this remains a 

hypothesis and needs future studies for further validity. If proven, this may also have 

important therapeutic ramifications like consideration for initiating early basal insulin 

therapy in Indian type 2 diabetic individuals.  

We used standardized definitions for calculations for making the results comparable to 

previous studies. We also allowed patients to continue their native diets rather than 

introducing standardized diets during the CGM study in order to assess the real-world 

impact of local diets on glycemic excursions. We did not adjust diabetic medications 

during the study in order to minimise effect of medications on the glucose profile. On 

the other hand, a longer duration of CGM would have been an ideal choice compared 

to the two-day profile in our study which was chosen on account of practical 

considerations. 

Correlation of CGM metrics with HbA1c 

Correlation of average blood glucose by CGM to HbA1c 

Average blood glucose had a positive correlation with HbA1c (Spearman’s ρ= 0.764, 

p< 0.001). The scatter-plot for the relationship is shown in Figure 18, the R2 being 0.59. 

Glucose management indicator (GMI), also previously known as estimated HbA1c, was 

calculated using standardized equation in the software. This also showed a positive 

correlation with HbA1c (Spearman’s ρ= 0.775, p< 0.001). This relationship is in 

accordance with the results obtained in the ADAG study, where the correlation between 

mean glucose derived from a median number of 13 days of CGM and HbA1c was 

expressed as R2= 0.82 (p< 0.0001). The investigators could also derive the popular 

linear regression equation to express HbA1c as estimated average glucose (AG) (25). 

AG (mg/dl) = 28.7 × A1C − 46.7  

This linear relationship has been put to use to derive GMI from the mean glucose value 

obtained with CGM. This was done in order to provide a meaningful index of average 

glycemia similar to HbA1c for the treating physicians and patients who are familiar 

with the use of the latter in clinical decision-making. Bergenstal et al combined data 

from relevant studies to provide the following equation to calculate GMI. This was 
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done by studying the relationship between CGM-derived average glucose and 

laboratory-measured HbA1c and arriving at a regression equation. 

GMI (%) = 3.31 + 0.02392 (mean glucose in mg/dl) 

The authors recommended CGM data of at least 10 days, and preferably 14 days for 

calculation of GMI from CGM data (28). This is in accordance with the results by 

Riddlesworth et al, who proposed that 14 days of CGM data provides a good estimation 

of glucose metrics over 3 months (88). 

We attempted to study the mathematical relationship between the average glucose in 

our CGM profiles (median readings 831, IQR 802-1069.5) and the laboratory-assessed 

HbA1c in our study. Linear regression analysis was done and the following 

mathematical relationship was obtained. 

HbA1c (%) = 3.357 + 0.033 (mean glucose in mg/dl) 

Hence, the relationship obtained in our study was similar to that observed in previous 

studies by Bergenstal et al, confirming the relationship observed between mean average 

glucose and HbA1c in Indian type 2 diabetes patients. Importantly, this relationship 

was similar despite the use of shorter duration of profiles in our study, as opposed to 

the original studies. Patients enrolled in our study were on stable lifestyle and 

pharmacological therapy for atleast 3 months with no identifiable intercurrent 

conditions that could affect the glycemic profile. Hence, there may be a role for shorter 

duration CGM profiles in assessing long-term glycemic control and calculating 

meaningful GMI in appropriately selected individual patients. This is particularly 

relevant in resource constrained and pandemic settings where longer duration studies 

may not be practically feasible. While the reference studies used DexCom sensors, we 

have used Medtronic iPro2 Professional CGM. This underlines the validity of the 

relationship when calculated with other sensors with similar accuracy. However, it 

needs to be emphasised that our cohort is significantly small compared to the original 

studies, and larger studies would be better equipped to derive such mathematical 

relationships for a population. 

While deriving such broad equations is particularly valuable for research and at 

population level, the extent of variance in HbA1c explained by the changes in mean 
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glucose is likely to be race and individual-specific. This can arise out of non-glycemic 

factors like variations in RBC life-span, hemoglobin glycation rates, differential 

GLUT1 expression and intracellular glycation pathways (5). Additionally, prevalence 

of hemoglobinopathies and analytical factors like assay-related variations also play a 

significant role, as has been discussed previously.  

The importance of non-glycemic factors cannot be understated as basing decision-

making on HbA1c alone can lead to both overtreatment and undertreatment, and 

potentially harmful therapeutic decisions. The discrepancy between mean glycemia and 

HbA1c has been termed the hemoglobin glycation index (HGI), and it has been 

considered an innate biological characteristic that is specific for an individual.  

The median HGI in our study population was 1.15 (IQR 0.75-2.05). While 16% (n= 8) 

of the study population had a HGI of <0.5%, as many as 21% (n= 11), 36% (n= 19) and 

27% (n=14) had HGI values of 0.5- 1, 1-2 and >2% respectively. Such discrepancy can 

arise out of recent changes in diet, physical activity or medications, which we tried to 

minimise by including patients on stable lifestyle and medications in the study. 

Therefore, as many as 84% of the study population had a HGI > 0.5%, emphasising the 

importance of considering CGM data in setting therapeutic targets.  CGM can hence 

play a role in determining HGI in individual patients, and further studies can be planned 

for assessing its utility for better interpretation of future laboratory HbA1c, setting 

individualized HbA1c targets and recommending appropriate therapy. 

Correlation of hyperglycemic and hypoglycemic metrics with HbA1c 

TIR had a statistically significant negative correlation with HbA1c (Spearman’s ρ= - 

0.722, p< 0.001). We also did linear regression analysis to get a mathematical equation 

relationship between HbA1c and TIR in our study population HbA1c (%) = 12.7 – 

0.059 (TIR in %). 

Hence, every 10% increase in TIR corresponded to a 0.59% reduction in HbA1c in our 

study. 

This is consistent with previous studies by Vigersky et al and Beck et al, where TIR 

had a statistically significant negative correlation with HbA1c, with Pearson’s 

correlation coefficients of -0.84 and -0.67 respectively. Every 10% increase in TIR 
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corresponded to a decrease in HbA1c of 0.8% and 0.6% respectively. While Vigersky 

et al compiled data from 18 studies (n=1137, type 1 and type 2 diabetes), Beck et al 

compiled data from four RCTs (n=545, type 1 diabetes), three of which used DexCom 

CGM systems, and one RCT used Dexcom, MiniMed Paradigm and Abbott Freestyle 

Navigator (89,90). The number of participants in our study is smaller compared to these 

studies, but the consistent relationship obtained nevertheless reinforces the close 

relationship between TIR and HbA1c. 

TIR has also been associated with microvascular complications in several studies. For 

instance, in a study by Beck et al, every 10% reduction in TIR translated into a 64% 

and 40% increase in hazard for developing retinopathy and microalbuminuria 

respectively (91). In a recent systematic review by Raj et al, a 10% increase in TIR was 

associated with reduction in albuminuria, severity of diabetic retinopathy, prevalence 

of diabetic peripheral neuropathy and cardiac autonomic neuropathy (94). However, 

longitudinal trials with unequivocal evidence for association of TIR with complications 

are lacking. Hence, demonstration of a close relationship between TIR and HbA1c 

should provide the impetus for research in this area. This is particularly true in the 

Indian setting as there is relative lack of studies utilizing CGM, and this should 

encourage inclusion of TIR as an outcome metric in future research. 

Additionally, as expected, HbA1c had a statistically significant positive correlation 

with metrics which serve as measures of hyperglycemia such as TAR, peak glucose and 

AUC above limit. HbA1c also had a negative correlation with hypoglycemic measures 

like TBR and AUC below limit (Table 9). While the correlation was expectedly 

numerically stronger with the hyperglycemic indices mentioned above, the correlation 

with TBR was -0.396 (Spearman’s ρ), but still statistically significant (p= 0.004). This 

emphasises the need to be vigilant for hypoglycemia in patients with relatively “well-

controlled” HbA1c, as a seemingly normal HbA1c may create a false sense of 

reassurance. Any attempt at normalization of HbA1c needs to be balanced with the cost 

of rendering the patient to spend some time in hypoglycemia, which is better detected 

with CGM as seen in our study. Hence, CGM should be considered as an adjunct to 

routine HbA1c in diabetic patients, and especially in relatively well-controlled diabetes, 

a category that may not be traditionally considered a candidate for CGM. 
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Correlation of GV metrics with HbA1c 

Glucose standard deviation (SD) had a statistically significant positive correlation with 

HbA1c (Spearman’s ρ=0.324, p= 0.019), represented in Table 10 and Figure 21.  

Glucose SD obtained from CGM has been shown to have a positive correlation with 

HbA1c in studies by Piona et al (r = 0.561, p < 0.0001) and Babaya et al (137,138). 

Since standard deviation represents the dispersion of values around mean glucose, it is 

likely to get affected by the extent of glycemic control. Coefficient of variation adjusts 

for the mean glycemia, and hence has been considered to be the standard metric for 

glycemic variability. 

Coefficient of variation (CV%) had a statistically significant negative correlation with 

HbA1c (Spearman’s ρ= -0.312, p= 0.024), shown in Figure 22. 

Most studies have either found a positive correlation or no correlation between CV and 

HbA1c. Lu et al analysed CGM data from 2559 patients with type 2 diabetes, published 

in 2020. While HbA1c positively correlated with SD, there was no significant 

correlation between CV and HbA1c (139). Piona et al did not find a significant 

correlation between HbA1c and CV in a large cohort of 654 children and adolescents 

with type 1 diabetes in their study published in 2021. Additionally, there was no 

significant difference in CV in HbA1c-based subgroups (137). Similarly, Toschi et al, 

in their study published in 2020 involving 130 older adults with type 1 diabetes, did not 

find a significant difference in HbA1c in the low CV (≤ 36%) and the high CV group 

(> 36%) (140). Babaya et al also did not find a correlation between CV and HbA1c in 

their study to assess correlation of CGM metrics with HbA1c in 19 adult Japanese 

patients with type 1 diabetes in 2021. They did find a statistically significant inverse 

relationship between CV and fasting serum C-peptide, emphasising the importance of 

residual β cell function in minimizing glycemic variability (138).  

Acute glycemic fluctuations, represented by CV, may only lead to formation of 

aldimine products, and not the irreversible ketoamines, and hence may not contribute 

to HbA1c (141). Hence, coefficient of variation should be considered as an independent 

entity from HbA1c, and needs to be evaluated in addition to HbA1c for holistic diabetes 

care. 
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In a study by Suh et al in 2014, CGM data from 63 type 2 diabetic patients was analysed. 

A positive correlation was obtained between HbA1c and CV (Spearman’s coefficient= 

0.456, p< 0.001). However, there was no significant correlation found when patients 

were divided into HbA1c subgroups (HbA1c< 7.5% and HbA1c ≥ 7.5%) (127). Faerch 

et al also found a statistically significant positive association between HbA1c and CV 

in 77 non-diabetics and 97 type 2 diabetics from the ADAG study (14). 

The negative correlation of CV with HbA1c in our study population might be mediated 

by therapeutic choices like use of DPP-4 inhibitors, metformin and insulin in patients 

with higher HbA1c which minimise glucose fluctuations. But it does reiterate the fact 

that a seemingly normal HbA1c should not rule out clinically significant glycemic 

variability. 

Another important implication of CV is that it can potentially mediate the relationship 

between TIR and HbA1c. Interestingly, in the study by Lu et al, the regression lines for 

the relationship between TIR and HbA1c differed significantly between CV quartiles, 

and the difference was more pronounced when data was grouped as CV <36% and CV 

≥36%. It was seen that the regression lines intersected at an eHbA1c of around 7.8%. 

Inferences of this finding were that a higher TIR is associated with higher CV when 

eHbA1c is >7.8% (62.0 mmol/mol), and TIR decreases with increasing CV when 

HbA1c is <7.8% (139). Hence, it was postulated that CV could explain the variability 

in the TIR- HbA1c relationship seen in previous studies by Vigersky and Beck et al 

(89,90). 

Among the rest of the GV metrics, HbA1c had a statistically significant positive 

correlation with CONGA, LI, JINDEX, HBGI, GRADE, GRADE% hyperglycemia, 

MODD, ADDR, MVALUE and MAG. It did not have a statistically significant 

correlation with other GV indices like LBGI, GRADE% hypoglycemia and MAGE. 

Previous studies have also shown a variable relationship of GV metrics to HbA1c.  

Shivaprasad et al compared GV indices in 61 patients each of T2DM and 

Fibrocalculous pancreatic diabetes (FCPD). Hyperglycemic indices like GRADE % 

hyperglycemia, TAR, AUC above 180 mg/dl, HBGI and JINDEX had a moderate 

positive correlation (r2= 0.3- 0.6) with HbA1c in both the groups. Hypoglycemic 

indices like GRADE% hypoglycemia, TBR, AUC below 70 mg/dl, LBGI had a 
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negative correlation with HbA1c in the type 2 DM subgroup, but not in the FCPD 

group (142). Similarly, Nyiraty et al evaluated GV indices in 21 type 1 diabetic 

patients, and found a positive correlation of HbA1c with CONGA and MAG (143). 

Hence, broadly speaking, HbA1c tends to correlate positively with GV indices that 

primarily reflect hyperglycemia, and has a variable or non-significant correlation with 

indices that primarily reflect hypoglycemia. The positive correlation with majority of 

GV indices in our study might have been driven by more time being spent in 

hyperglycemia in our study population on account of uncontrolled diabetes in majority 

of our patients [median HbA1c of 8.75% (IQR 7.65- 10.96)]. Additionally, periods of 

hypoglycemia tend to be shorter compared to hyperglycemic periods, as the patients 

tend to get symptomatic, or overcorrect with carbohydrate consumption on detection of 

hypoglycemia, leading to a rebound hyperglycemia. Hence, HbA1c, which is driven by 

excess glycation due to hyperglycemia may positively correlate with GV indices, 

especially in uncontrolled diabetics. However, it may remain insensitive to short and 

rapid fluctuations, hence the variable relationship. Additionally, the negative or 

variable correlation of HbA1c with GV indices that reflect hypoglycemic episodes 

reiterates the fact that HbA1c has a poor sensitivity to capture hypoglycemia. 

CGM metrics in relation to meal patterns 

Majority of the patients in the study consumed three major meals per day (88.5%, 

n=46), whereas 11.5% (n=6) consumed two major meals a day. We compared pertinent 

characteristics between the two groups. HbA1c was found to be significantly higher in 

the three-meal per day subgroup, with a median of 9.05% (7.90- 11.40) versus 7.55% 

(6.6- 8.6) in the two-meal subgroup. There were no statistically significant differences 

in CGM parameters like TIR, % CV, and fasting and postprandial contribution to total 

hyperglycemia (Table 15).  

The effect of meal frequency on glycemic control has been variable in previous studies, 

with some studies showing a better control with 1-2 meals/ day, while others showed a 

better control with a higher frequency (5-6 meals/ day) (104,105). Increased meal 

frequency can also increase glycemic variability as seen in the study by Ahola et al 

(102). Timing of the meal also appears to be important as breakfast skipping has been 

associated with adverse glycemic and metabolic outcomes (100–102). Time-restricted 
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feeding is under the spotlight for improving metabolic outcomes mediated by multiple 

mechanisms like weight loss, flipping of the metabolic switch and changes in gut 

microbiota. It has been demonstrated to have beneficial effects on glycemic control, 

reductions in fasting insulin and improved insulin sensitivity in several studies 

independent of the weight loss (144). 

While the increased HbA1c in the three-meal subgroup might reflect the increased 

caloric intake habits in this subgroup, it would be difficult to draw inferences from this 

subgroup analysis since the two groups were not well-balanced in terms of numbers. 

Despite the lower numbers, it does beg the question whether two meal pattern, or a time 

restricted meal pattern with a higher intervening period without food intake is better for 

diabetes control. This has not been explored in previous CGM studies from India and 

our study did not have enough numbers to bring clarity on this research question. 

Additional findings 

CGM metrics in relation to insulin and OHA use 

Majority of the patient were on oral antihyperglycemic therapy (86.5%, n=45), whereas 

13.5% (n=6) were on both insulin and OHAs. On comparison of pertinent findings 

among the two groups, HbA1c was found to be significantly higher in the insulin user 

subgroup. There were no statistically significant differences in TIR, %CV, and fasting 

and postprandial contribution to total hyperglycemia. As the numbers in the respective 

groups were not well balanced, it would be difficult to draw inferences by this 

comparison.  

Use of certain OHA classes like GLP-1 agonists, DPP-4 inhibitors, SGLT-2 inhibitors 

and metformin have been demonstrated to have beneficial effect on GV measures in 

several studies (86). Similarly, Iga et al demonstrated better morning GV measures with 

use of insulin degludec when compared to glargine in a randomized controlled trial 

including Japanese type 1 diabetic patients (87). Due to the limited numbers in our 

study, we couldnot perform such an analysis. However, studying the effect of using 

insulin and various subclasses of oral agents on CGM parameters, especially glycemic 

variability is a worthwhile research question. 
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Hypoglycemia 

Eight patients (14.38 %) of the study population had evidence of significant 

hypoglycemia on CGM, defined as TBR ≥ 4%. Seventy-five percent (n=6) of these 

patients had level 2 hypoglycemia (time below 54 mg/dl) of ≥ 1%. Additionally, only 

25% (n=2) of these patients were symptomatic, hence CGM aided detection of 

clinically unidentifiable hypoglycemic episodes that were missed on SMBG. All the 

patients with hypoglycemia had a CV ≥ 26.4%, the cut-off that we had derived from 

ROC curve analysis for CV% as a predictor of hypoglycemia, whereas only 25% (n= 

2) of patients had a CV ≥ 36%, the conventional cut-off for unstable glucose levels. 

Uemura et al retrospectively studied CGM data of 62 type 2 diabetic patients on insulin 

therapy, and found hypoglycemia in 19.4% patients, all of the patients except one were 

asymptomatic (145). Kesavadev et al observed a higher prevalence of previously 

unknown hypoglycemia in CGM profiles of 38% of the 296 T2DM patients, of whom 

91% were on insulin (146). 

In a retrospective cohort study involving 1520 type 2 diabetes patients by Wei et al, 

CGM profiles were retrospectively assessed for hypoglycemia and its severity. As 

many as 22.82% of the cohort experienced hypoglycemia, of which 72.62% were 

asymptomatic. Multivariate Cox regression analysis was done with a median follow up 

of 31 months, after which hypoglycemia was seen to be associated with CV death (HR 

2.642, 95% CI: 1.398- 4.994), non-fatal stroke (HR 1.813, 95% CI: 1.11- 2.96), and all-

cause mortality (HR 1.96, 95% CI: 1.124- 3.418) after adjustment. On the other hand, 

hypoglycemia was not associated with non-fatal MI and unstable angina. Risk of 

cardiovascular death was higher in patients with severe hypoglycemia when compared 

to mild hypoglycemia. Additionally, patients with symptomatic and asymptomatic 

hypoglycemia had similar MACE and all-cause mortality outcomes (147). These 

findings were consistent with the increased risk of cardiovascular disease (RR 2.05, 

95% CI 1.74- 2.42) seen with severe hypoglycemia in a meta-analysis of 6 

observational studies (n= 903510 participants) by Goto et al (148). 

Hence, CGM is invaluable in picking up asymptomatic hypoglycemia in type 2 diabetic 

individuals. This has dual implications in the form of immediate adjustment of therapy 
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to minimise hypoglycemia, as well as affecting long-term outcomes, especially 

cardiovascular morbidity and mortality. 

We also evaluated the correlation of GV indices with hypoglycemia. Coefficient of 

variation had a statistically significant positive correlation with TBR (Spearman’s ρ= 

0.449, p= 0.001) and level 2 TBR (Spearman’s ρ= 0.373, p= 0.007). Hence, increased 

coefficient of variation was associated with an increased time in hypoglycemia. We 

explored this relationship further by doing a ROC curve analysis for CV as a predictor 

of hypoglycemia, with which we got a good diagnostic performance [AUC 0.793; 95% 

CI: 0.654-0.931]. Using Youden’s index method, the ideal cut-off for CV% was found 

to be 26.4%, where sensitivity was 100.0% and specificity was 63.6% for predicting 

hypoglycemia on CGM. For the conventional cut-off of 36%, we found a sensitivity of 

37.5% and specificity of 97.7%. All the patients with hypoglycemia in our study 

population had a CV ≥ 26.4%, whereas only 6% had a CV of  ≥ 36%. 

CV has been the recommended GV metric in the consensus guidelines on CGM. A 

CV% of < 36% has been recommended as a target for diabetic patients on CGM (72). 

This was based on the study by Monnier et al, where a CV% ≥ 36% was associated 

with significant increase in frequency of hypoglycemia (79). In the study by Toschi et 

al comprising of 130 older adults with type 1 diabetes, found that the high CV group 

(CV >36%) spent more time in hypoglycemia and hyperglycemia compared to the low 

CV group (≤ 36%), inspite of no significant difference in HbA1c between the two 

groups (140).  

A cut-off of 26.4% had a better diagnostic performance in our study population, and 

can be used instead of the conventional cut-off of CV ≥ 36% to reliably predict 

hypoglycemia. This can be secondary to racial variations, type of diabetes, residual β 

cell function, or the range of glycemic control in the study population. We did not 

measure C-peptide as a measure of residual β cell function in our patients. 

The threshold for CV% beyond which risk of hypoglycemia increases has been 

reconsidered recently. Mo et al also used ROC curve analysis to study CV as a predictor 

for TBR ≥ 4% in 2395 type 2 and 612 type 1 diabetes patients from China. They found 

that the AUCs obtained were good (> 0.8) in both type 1 and type 2 diabetes. However, 

the optimum cut-offs obtained were significantly different. A cut‐off value of 28.8% 
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was derived for patients with type 2 diabetes, with a sensitivity of 81% and a specificity 

of 77%. On the other hand, a cut‐off of 36.7% was found optimal for type 1 diabetes 

patients, with a sensitivity of 66% and a specificity of 88% at cut‐point. Hence, there is 

a need for distinct studies in type 1 and type 2 diabetes for deriving specific data for 

CGM parameters. 

Among other GV parameters, JINDEX, LBGI, GRADE % hypoglycemia, were found 

to have a statistically significant positive correlation with TBR. In other words, these 

GV parameters were associated with an increased risk of hypoglycemia, and hence can 

be assumed to adequately assess the risk of hypoglycemia.  

On the other hand, CONGA, GRADE, ADDR had a statistically significant negative 

correlation with TBR. This might be because of greater representation of the higher 

hyperglycemic burden in our study population. Additionally, SD, LI, MODD, MAGE, 

MVALUE and MAG did not have any statistically significant correlation with TBR. 

The variable relationship of GV parameters to hypoglycemic risk can add to confusion 

on choosing the right GV parameter. In our study, CV% served as a good predictor of 

hypoglycemia, although the optimal cut-off was lower at 26.4%. The ease of calculating 

CV is an added benefit, and can be easily done without needing complicated formulae. 

Other GV parameters that had a positive correlation were hypoglycemia specific- GV 

parameters like LBGI and GRADE% hypoglycemia. 

HbA1c subgroup analysis 

We divided the patients into three subgroups on the basis of their HbA1c: HbA1c <8%, 

HbA1c 8-10%, and HbA1c >10% for comparison of relevant variables. There was no 

significant difference in baseline characteristics like gender distribution, BMI, waist to 

hip circumference ratio, smoking, alcohol intake. Also, there was no significant 

difference in prevalence of microvascular or macrovascular complications between the 

tertiles. HbA1c is a time-tested metric of diabetes-related complications and outcomes 

as discussed previously. Our study numbers were likely underpowered to detect 

differences in these variables. 

We also compared CGM parameters in the HbA1c tertiles. Consistent with results 

obtained from the correlation analysis, average glucose, GMI, TAR increased 
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significantly and TIR decreased significantly with increasing HbA1c. Interestingly, 

TBR and CV were the highest in the lowest tertile of HbA1c, with a p value of 0.025.  

Previous studies have reported variable results with respect to hypoglycemia at different 

levels of HbA1c. Lipska et al studied hypoglycemia rates in 9094 type 2 diabetic 

patients in the Diabetes and Aging Study in 2013. They observed an increased risk of 

hypoglycemia in patients with the lowest (HbA1c< 6%) and the highest HbA1c (≥ 9%) 

(149). In a recent study by Gomez et al including CGM data from 274 type 2 diabetes 

patients, HbA1c> 9% was associated with high glycemic variability (150).  

The higher TBR in the lowest HbA1c tertile could have been mediated by the higher 

CV in this group. Additionally, use of medications with a view to normalize HbA1c in 

this subgroup may have led to increased time spent in hypoglycemia. The role of 24-

hour glucose profiling by 7-point SMBG or even better by a 288-reading CGM can help 

achieve HbA1c targets while tailoring therapy to prevent unwanted hypoglycemia and 

its adverse effects. Conversely, patients in the higher HbA1c tertiles having lower CV 

might be secondary to usage of multiple antidiabetic medications with a beneficial 

effect on glycemic variability.  

The higher TBR and CV% in the lowest tertile of HbA1c in our study emphasises the 

role of glycemic variability in increasing the risk of hypoglycemia. Hence, glycemic 

variability should be considered a distinct entity of glycemic control, and should be 

targeted in addition to HbA1c. 

TIR subgroup analysis 

Patients were divided into three subgroups based on the TIR as TIR <40% (n= 19), 41- 

80%(n= 18), and >80% (n= 15). GMI, average glucose, TAR expectedly decreased 

significantly with increasing TIR (p < 0.001). There was no significant difference in 

TBR in the TIR subgroups. This emphasises the need to consider TBR as a distinct 

glycemic target from TIR, and both parameters need to be targeted for a more holistic 

management in diabetic patients, as has been emphasised by the 2019 consensus 

guidelines (72). Keeping glycemia in a narrow window of TIR while scrupulously 

avoiding TBR and TAR may be the key to improved cardiovascular outcomes in 

patients of diabetes. 
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SD was significantly lower in the subgroup with TIR> 80%. This is an expected finding 

as SD is correlated with mean glucose. CV% was highest in the subgroups with TIR 

41-80%, and lower in the TIR<40% and TIR>80% subgroups (Table 19). These 

between-group differences were statistically significant (p= 0.003).  

Comparing the CV parameters in the HbA1c and TIR subgroups showed interesting 

results. A linear relationship between TIR and HbA1c would ideally mean parallel 

findings in the HbA1c and TIR subgroups. This was true in case of uncontrolled 

diabetes (High HbA1c/ low TIR), both of which were associated with lower CV. We 

have discussed possible mechanisms, including interferences by therapy in the previous 

section.  

However, there was a dichotomy in the patients with “well-controlled” diabetes (low 

HbA1c/ high TIR). Patients in the lowest HbA1c tertile were associated with higher 

CV, whereas patients in the highest TIR subgroup had a lower CV. The arithmetic 

average of highs and lows may still be an average i.e. a diabetic patient with good 

HbA1c may still be experiencing both high and low blood glucose values which can be 

better picked up by parameters like TIR and others from CGM. Time-in-range, by being 

directly representative of the time spent in the preferred glucose range, may be a more 

intuitive way of targeting glycemia in diabetes, encompassing glycemic variability as 

compared to HbA1c, which is just a measure of average glycemia.  

CGM use enabled us to assess various aspects of dysglycemia, and examine and expand 

on the current place of CGM in clinical practice. Recapitulating Table 3 (Current 

aspects of utility of CGM), we have summarised the pertinent lessons in our study with 

respect to utility of CGM in Table 22. 
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Table 22. Utility of CGM and takeaways from the study 

Utility Relevant 

CGM 

metrics 

Equivalent 

clinical 

practice 

standards 

Takeaways from the study 

Assessment of short-

term glycemic control 

Mean 

glucose 

% TIR, 

TAR, TBR 

SMBG 

FPG, 

PPPG, 

RPG 

• CGM readings had satisfactory 

glucometer cross-calibration 

• Proportions of patients meeting CGM 

targets: 

TIR ≥ 70% in 42.3% 

TBR of < 4% in 84.62%  

TAR < 25% in 40.38%  

Assessment of long-term 

glycemic control 

GMI HbA1c • GMI correlated well with HbA1c 

(Spearman’s ρ= 0.775, p< 0.001) 

• TIR had a negative correlation with 

HbA1c (Spearman’s ρ= - 0.722, p< 

0.001). 

• Every 10% increase in TIR corresponded 

to a 0.59% reduction in HbA1c. 

Assessment of fasting 

and postprandial 

components of 

hyperglycemia 

AUC-total, 

AUC-

postprandial, 

AUC-fasting 

- • Percentage contribution of postprandial 

hyperglycemia gradually decreased, with 

a reciprocal increase in contribution from 

fasting hyperglycemia across the HbA1c 

tertiles 

• Relatively higher burden of fasting 

hyperglycemia even at relatively well-

controlled HbA1c in Indian type 2 

diabetes patients 

Assessment of glycemic 

variability including 

hypoglycemia 

SD, % CV SD, % CV 

from 

SMBG 

readings  

• 14.38% had hypoglycemia on CGM 

(missed on SMBG), 75% were 

asymptomatic  

• CV% ≥26.4% predicted hypoglycemia 

on CGM with 100% sensitivity and 

63.6% specificity 

• 48.07% had a CV% of ≥26.4%, only 6% 

had a CV of ≥ 36% 

CGM metrics as 

outcome measures 

• Microvascular 

complications 

• Macrovascular 

complications 

• Cardiovascular and 

all-cause mortality 

 

 

TIR 

TBR 

CV% 

 

 

 

HbA1c 

 

 

Not studied 
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Limitations of the study 

Our study had some limitations.  

• Small sample size (n= 56) finally recruited as opposed to the intended 95 patients: 

A major reason for this was the unprecedented COVID-19 pandemic. The first wave 

of the pandemic started immediately after the grant of Ethics Committee approval 

(January 2020). This significantly limited the number of patients attending out-

patient services, from routine OPD numbers to a bare minimum at the peak of the 

pandemic. Though many patients utilized the telemedicine OPD, they were not 

comfortable with contact with hospital, staff or equipment and chose virtual 

prescriptions and management. The pandemic exhausted hospital resources and 

impeded elective inpatient services. Additionally, the combined effect of the three 

waves including the massive debilitating second wave led to majority of the patients 

having had a history of COVID-19, receiving steroids, or undergoing frequent 

change in medications during intercurrent illnesses, excluding them from the study. 

Pandemic and the lockdowns also had an adverse impact on the logistics of 

procuring consumables for the study. 

• Four patients had sensor failure or malfunction, resulting in incomplete CGM 

profiles. Hence, only 52 patients were included in the final analysis. 

• We used two different types of HbA1c assays during the duration of the study as 

per availability. HbA1c was measured by a latex agglutination inhibition assay with 

Beckman Coulter analyzer in the first half of the study period, whereas ion 

exchange high performance liquid chromatography (HPLC) with Bio-Rad 

VARIANT II Hemoglobin A1c program was used in the latter half of the study. 

• We did CGM profiles for a minimum of 2 days in the study, with median 831 

readings (IQR 802-1069.5). This was done in view of practical issues, and all 

measures were taken to minimise undue interferences by excluding patients with 

recent changes in lifestyle, diabetes medications or intercurrent illness. The 

guidelines recommend 10-14 days of CGM for better correlation with HbA1c, 

although research studies for assessment of short-term glycemic status, GV and 

relative contributions of fasting and postprandial hyperglycemia have been done 

with ≥2 days of CGM profile in controlled settings, which has been shown to be 

representative of a longer duration of data. 
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• Enlite sensor used in our study has a measurable range of 40-400 mg/dl. Hence, 

glucose excursions in the study population beyond these ranges would not be 

accounted for in the CGM data. 

Strengths of the study 

• We designed a study specifically to assess correlation of CGM parameters with 

HbA1c as well as assessment of relative contributions of fasting and postprandial 

hyperglycemia to total hyperglycemia in the Indian context. This has not been 

studied previously to the best of our knowledge. 

• We used retrospective CGM in the study, and hence patients were blinded to their 

blood glucose levels. This would avoid any corrective steps from the patient that 

could affect CGM parameters like TIR.   

• We used standardized definitions for defining fasting, postprandial and total 

hyperglycemia in order to make the results as comparable as possible to previous 

studies. We also used guideline-recommended ranges for defining times in range, 

hyperglycemia and hypoglycemia. 

• We selected patients on stable lifestyle and pharmacological therapy in order to 

minimize bias in correlation of HBA1c and CGM parameters 

• We allowed the patients to continue their native diets during the duration of the 

study in order to assess real-world glycemic responses. 

• None of the patients had any significant reactions to sensors or dislodgement 

• CGM profiles obtained for the study could be utilized for finetuning glycemic 

management in the patient. However, our study was not designed to study the 

efficacy of therapeutic interventions. 

• Utilization of CGM as a part of the study improved familiarity and ease of use for 

the treating physicians, hence paving the way for more widespread use of the 

available technology in the department for improving patient care. 
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CONCLUSION 

Type 2 DM is one of the major public health burdens in India and is only expected to 

burgeon in the coming decades. Newer technologies like CGM are assuming greater 

relevance in the era of personalized medicine. Studies using CGM in type 2 diabetes 

have been far and few in the Indian context. We conducted this prospective 

observational study with professional CGM in Indian type 2 diabetes patients. The 

study was done with an objective to assess correlation of fasting and post prandial 

glycemia, measures of glycemic variability and other CGM parameters with HbA1C in 

Indian type 2 diabetes patients. We felt that the unique interaction of the Asian Indian 

phenotype and the socio-cultural determinants like diet warranted a distinct study in our 

population.  We enrolled 56 consecutive patients with type 2 diabetes aged between 30-

70 years, of which 52 patients were included in the final analysis. Important findings in 

the study have been summarised in the following section. 

Mean age of presentation in the study population was 52.62 (7.51) years, with males 

comprising of 55.7% of patients. Dyslipidemia (90.4%), abdominal obesity (82.69%) 

and hypertension (38.5%) were prevalent comorbidities. One or more microvascular 

complications were present in 65.4% of the study population, of which peripheral 

neuropathy was the most common (51.9%). Microalbuminuria and retinopathy were 

present in 21.2% and 11.5% of patients respectively. Macrovascular complications 

were present in 11.5% of patients, of which cardiovascular disease was the most 

common (9.6%). 

Fasting hyperglycemia better correlated with HbA1c than postprandial hyperglycemia 

in our study population. The percentage contribution of postprandial hyperglycemia 

gradually decreased, with a reciprocal increase in contribution from fasting 

hyperglycemia across the HbA1c tertiles. The patients in our study population tended 

to have higher burden of fasting hyperglycemia even at relatively well-controlled 

HbA1c, and the contributions of postprandial hyperglycemia remained lesser than those 

observed in previous studies at all levels of glycemic control. Potential explanations for 

this phenomenon could be the changes brought about by the form of medications for 

diabetes, an earlier β cell dysfunction and insulin secretory defects in Indian type 2 

diabetes patients or other unknown genetic or ethnicity-specific mechanisms. 
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Average blood glucose had a positive correlation with HbA1c. The mathematical 

relationship derived by linear regression was similar to the previous studies, despite a 

shorter duration of CGM (2 days), although a full profile over 10-14 days gives a more 

complete picture. Hence, there may be a role for shorter duration CGM profiles in 

assessing long-term glycemic control and calculating meaningful GMI in appropriately 

selected individual patients (stable lifestyle and pharmacological therapy for 3 months), 

especially in resource-constrained and pandemic settings. We also noted that 

hemoglobin glycation index (HGI), an index of discrepancy between the laboratory-

measured HbA1c and the CGM-derived GMI, was >0.5% in 84% of the study 

participants. This underlines the importance of considering CGM data in setting 

individualized therapeutic targets for HbA1c. 

TIR had a statistically significant negative correlation with HbA1c. Every 10% 

increase in TIR corresponding to a 0.59% reduction in HbA1c in our study, 

suggestive of a close relationship between the two. HbA1c had a statistically significant 

positive correlation with measures of hyperglycemia such as TAR, peak glucose and 

AUC above limit. HbA1c also had a negative correlation with hypoglycemic measures 

like TBR and AUC below limit. This emphasises the need to be vigilant for 

hypoglycemia in patients with relatively “well-controlled” HbA1c, and avoid 

aggressively pursuing normalization of HbA1c in the face of increasing hypoglycemia, 

and utilize more intuitive measures of glycemic control like TIR and TBR. 

Coefficient of variation (CV%) had a statistically significant negative correlation with 

HbA1c, in contrast to previous studies which have shown no association or a positive 

correlation. The negative correlation of CV with HbA1c in our study population might 

be mediated by therapeutic choices like use of DPP-4 inhibitors, metformin and insulin 

in patients with higher HbA1c which minimise glucose fluctuations. Rest of the GV 

indices had a variable relationship with HbA1c, reiterating the fact that a seemingly 

normal HbA1c should not rule out clinically significant glycemic variability. 

CGM could identify hypoglycemia (TBR ≥ 4%) in 14.38 % of the study population, 

of which 75% had time in level 2 hypoglycemia (<54 mg/dl) of ≥ 1% and were 

asymptomatic. Hence CGM was invaluable in identification of hypoglycemic episodes 

that would otherwise have been missed, allowing therapeutic modifications to minimise 

hypoglycemia as well as potentially benefit long-term outcomes. 
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Coefficient of variation had a statistically significant positive correlation with TBR. A 

CV% cut-off of 26.4% was found to be 100% sensitive and 63.3% specific for 

predicting hypoglycemia on CGM in our study. The conventional cut-off of 36% had 

a poor sensitivity (37.5%) and 97.7% specificity for the same. Rest of the GV indices 

had a variable relationship with TBR. Hence CV served as a good predictor of 

hypoglycemia in our study, and the ease of calculating it makes it an optimal GV metric 

for clinical use. 

In conclusion, utilizing CGM could help us identify patterns of dysglycemia that were 

distinct from those reported in Caucasian populations. Additionally, we also could 

demonstrate a good correlation between major CGM parameters and HbA1c in Indian 

type 2 diabetes patients. However, glycemic variability remained a distinct entity, and 

needs to be addressed separately in managing diabetic patients. CGM could also shed 

light on the significant burden of hypoglycemia in our population, and GV parameters 

like CV can be vital in identifying at-risk patients. Thus CGM adds information beyond 

HbA1c in diabetic patients and with increasing use, it could be a handy tool in the 

armamentarium of clinicians for improved diabetes care. 
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Annexure 1 

Institutional Ethical Committee Clearance Certificate 
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Annexure 2 

Informed Consent Form 

All India Institute of Medical Sciences, Jodhpur 

 

Title of the project:  

Correlation of glycemic profile by continuous glucose monitoring with HbA1c and 

meal patterns in type 2 diabetic individuals 

 

Name of the Principal Investigator: Dr. Vanishri Ganakumar 

Tel. No. (Mobile): - 9868629901 

Patient OPD No: _______________________________________ 

I, ______________________________S/o or D/o___________________________ 

R/o ____________________________________give my full, free, voluntary consent 

to be a part of the study “Correlation of glycemic profile by continuous glucose 

monitoring with HbA1c and meal patterns in type 2 diabetic individuals” 

the procedure and nature of which has been explained to me in my own language to my 

full satisfaction. I confirm that I have had the opportunity to ask questions. 

I understand that my participation is voluntary and I am aware of my right to opt out of 

the study at any time without giving any reason. 

I understand that the information collected about me and any of my medical records 

may be looked at by responsible individual from AIIMS Jodhpur or from regulatory 

authorities. I give permission for these individuals to have access to my records. 

 

Date: _____________                       ________________________ 

 

Place: ____________                       Signature/Left thumb impression (Patient) 

 

This to certify that the above consent has been obtained in my presence. 

 

Date: ________________                  ___________________________ 

 

Place: ________________                Signature of Principal Investigator 

 

1. Witness 1      2. Witness 2 

 

____________________________   __________________________ 

 

Signature                  Signature 

Name: _______________________   Name: _____________________ 

Address: _____________________   Address: ___________________ 

_____________________________   ___________________________ 
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सूचित सहमचत प्रपत्र

परियोजना का शीर्षक:- 

“टाइप 2 मधुमेह में एचबीए 1 सी और भोजन पैटनन के साथ ननरंतर ग्लूकोज 
ननगरानी द्वारा ग्लाइसेनमक प्रोफाइल का सहसंबंध” 

 

“Correlation of glycemic profile by continuous glucose monitoring with HbA1c and 

meal patterns in type 2 diabetic individuals” 

प्रधान अन्वेषक:  डॉ वाणिश्री गिकुमार, टेलीफोन नंबर: 9868629901 

 

रोगी स्वयंसेवी पहचान संख्या

मैं पुत्र् पुत्री

ननवासी स्वयं को

अध्ययन का नहस्सा होने के नलए अपनी पूर्ण स्वैनछिक सहमनि देिा ह ूँ। इस अध्ययन का शीषणक है “टाइप 2 
मधुमेह में एचबीए 1 सी और भोजन पैटनन के साथ ननरंतर ग्लूकोज ननगरानी द्वारा ग्लाइसेनमक 
प्रोफाइल का सहसबंंध”। मेरी पूर्ण संिुनि के नलए मेरी खुद की भाषा में मुझे समझाया गया है। मैं इस बाि

की पुनि करिा ह ं नक मुझे सवाल पूिने का पूर्ण अवसर नमला है।

मैं यह समझिा ह ूँ नक मेरी भागीदारी स्वैनछिक है और नबना कोई कारर् बिाए नकसी भी समय इस अध्ययन

से स्वयं को वापस लेने के नलए मेरे अनधकार के बारे में मुझे पिा है।

मैं यह समझिा ह ूँ नक मेरे मेनिकल ररकॉिण की एकनत्रि की गई जानकारी अनखलभारिीयआयुनवणज्ञान संस्थान

जोधपुर या ननयामक अनधकाररयों द्वारा देखी जा सकिी है। मैं इन व्यनियों को मेरे ररकॉिण के उपयोग के नलए

अनुमनि देिा ह ूँ।

नदनांक:           

स्‍थान:                                                   हस्िाक्षर / वाम अंगूठे का 

ननशान 
यह प्रमानर्ि नकया जािा नक इस संस्करर् की सहमनि मेरी उपनस्थनि में प्राप्त की गयी है

नदनांक प्रमुख अन्वेषक के हस्िाक्षरस्‍थान

1 साक्षी साक्षी

हस्िाक्षर हस्िाक्षर

नाम नाम

पिा पिा
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Annexure 3 

Patient Information Sheet 

You are being invited to willing fully participate in the study entitled  

“Correlation of glycemic profile by continuous glucose monitoring with HbA1c and meal 

patterns in type 2 diabetic individuals” 

Diabetes mellitus is characterized by abnormally high levels of glucose (sugar) in the blood, 

which can be highly variable throughout the day. Current investigations available for assessing 

blood glucose control are HbA1C, laboratory measured and self monitored blood glucose by 

glucometers. New technologies like continuous glucose monitoring systems measure glucose 

every 5 minutes, and can aid you and your physician to identify your blood glucose trends over 

full 24 hours and manage accordingly. This study aims at correlating the information provided 

by continuous glucose monitoring system with HbA1c. 

 

Study Design 

If you are eligible for the study, you will receive a continuous glucose monitoring sensor. A 

patch will be applied to your skin with an inserter which will involve a single needle prick. The 

sensor will record your glucose levels every 5 minutes. You will be required to wear the patch 

for 2 days, and check your blood glucose before and after every major meal ± between 2 to 4 

am. You will also be given an event log sheet, where you will have to enter timings and details 

of your meals, glucometer readings, insulin and exercise. You will have to return the sensor to 

department after 2 days, after which the information will be downloaded and analysed. 

                                                                                                

General instructions: 

Skin reactions are rare. Kindly report to the investigator in case of severe itching, redness, pain 

or any other reaction 

 

Confidentiality 

Your medical records and identity will be treated as confidential documents. They will only be 

revealed to other doctors/scientists/monitors/auditors of the study if required. The results of the 

study may be published in a scientific journal but you will not be identified by name. 

Ethics committee approval has been obtained for the study. 

Your participation and rights 

Your participation in the study is fully voluntary and you may withdraw from the study anytime 

without having to give reasons for the same. In any case, you will receive the appropriate 

treatment for your condition. You will not be paid any amount for the participation in the study. 

You will have to pay for the routine investigations that will be done. 

 

For further queries/questions or help in emergency please contact. 

1. Dr. Vanishri Ganakumar- 9869629901 

2. Dr. Madhukar Mittal 
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रोगी सूचना पत्र 
 

आपको इस अध्ययन में स्वेच्छा से भाग लेने के नलए आमंत्रत्रत ककया जा रहा है 

 

"टाइप 2 मधुमेह व्यत्रियों में एचबीए 1 सी और भोजन पैटनन के साथ ननरंतर 
ग्लूकोज ननगरानी द्वारा ग्लाइसेनमक प्रोफाइल का सहसंबंध" 
मधुमेह में रि में असामान्य रूप से उच्च स्तर की ग्लूकोज (शकन रा) होती है, जो पूरे 

किन अत्यनधक पररवतननशील हो सकती है। उपलब्ध जांच में एचबीए 1 सी, प्रयोगशाला 
में मापा गया रि ग्लूकोज, और ग्लूकोमीटर से प्राप्त रि ग्लूकोज हैं। ननरंतर ग्लूकोज 
मॉननटररंग नसस्टम जसैी नई प्रौद्योनगककयां हर 5 नमनट में ग्लूकोज को मापती हैं, और 
आपको और आपके नचककत्सक को पूरे 24 घंटे में आपके रि शकन रा के रुझानों की 
पहचान करने और तिनुसार प्रबंधन करने में सहायता कर सकती हैं। इस अध्ययन 
का उदे्दश्य एचबीए 1 सी के साथ ननरंतर ग्लूकोज ननगरानी प्रणाली द्वारा प्रिान की गई 
जानकारी को सहसंबंनधत करना है। 

 

अध्ययन योजना 
यकि आप अध्ययन के नलए योग्य हैं, तो आपको एक ननरंतर ग्लूकोज मॉननटररंग 
सेंसर नमलेगा। आपकी त्वचा पर एक आवेषण के साथ एक पैच लगाया जाएगा 
जजसमें एक सुई चुभन शानमल होगी।  
सेंसर आपके ग्लूकोज के स्तर को हर 5 नमनट में ररकॉडन करेगा। आपको 2 किनों के 

नलए कडवाइस पहनना आवश्यक होगा। आप प्रमुख भोजन से पहले और भोजन के 2 
घंटे बाि, और रात में 2 से 4 बजे के बीच अपने रि शकन रा की जांच करेंगे। आपको 
एक ईवेंट लॉग शीट भी िी जाएगी, जहां आपको अपने भोजन, ग्लूकोमीटर रीकडंग, 

इंसुनलन और व्यायाम का समय और त्रववरण िजन करना होगा। आपको  
सेंसर को 2 किनों के बाि त्रवभाग को वापस करना होगा, जजसके बाि जानकारी 

डाउनलोड और त्रवश्लेषण की जाएगी। 
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सामान्य ननिेश: 
त्वचा की प्रनतकियाएं िलुनभ हैं। गंभीर खुजली, लानलमा, ििन या ककसी अन्य प्रनतकिया 
के मामले में कृपया जांचकतान को ररपोटन करें 

 

गोपनीयता 
आपके मेकडकल ररकॉडन और पहचान को गोपनीय िस्तावेजों के रूप में माना जाएगा। 
यकि आवश्यक हो तो वे केवल अध्ययन के अन्य डॉक्टरों / वैज्ञाननकों / मॉननटर / 
ऑकडटसन के सामने आएंगे। अध्ययन के पररणाम एक वैज्ञाननक पत्रत्रका में प्रकानशत 
हो सकते हैं लेककन आपको नाम से नहीं पहचाना जाएगा। 
अध्ययन के नलए आचार सनमनत की मंजूरी नमल गई है। 
अध्ययन में आपकी भागीिारी पूरी तरह से स्वैजच्छक है और आप त्रबना कारण बताए 
कभी भी अध्ययन से हट सकते हैं। ककसी भी मामले में, आप अपनी जस्थनत के नलए 
उपयुि उपचार प्राप्त करेंगे। अध्ययन में भाग लनेे के नलए आपको कोई रानश नहीं िी 
जाएगी। आपको ननयनमत जांच के नलए भुगतान करना होगा। 

 

आगे के प्रश्नों / प्रश्नों के नलए या आपात जस्थनत में मिि के नलए संपकन  करें। 

डॉ वाणिश्री गिकुमार 

डॉ। मधुकर नमत्तल 
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Annexure 4 

Case Record Form 

 

Sr No.                                                                                                                               

Date: 

Reg no.  

                            

1. Name   

2. Age/Sex  

3. CR No.  

4. Address 

 

 

5. Contact number      

6. Occupation   

 

 

 

Clinical data 

1. Age of onset of diabetes: 

2. Duration of diabetes: 

3. Family history of diabetes: Yes/ No 

4. Assessment of complications: 

CAD/   PAD/    CVD  /     CKD  /     Retinopathy/     Neuropathy / Diabetic 

foot 

5. Assessment of comorbidities: 

Hypertension/  Dyslipidemia  /  Others 

6. Smoking: Yes/ No 

7. Alcohol consumption: Yes/ No 

8. Treatment history: 
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Examination findings 

Height: 

Weight: 

BMI: 

WC: 

HC:  

WC/HC ratio:  

Fundus:  

 

Dietary assessment 

 

  

Drug  Dose duration
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Investigational profile: 

Investigation   

CBC   

LFT   

KFT   

Lipid profile   

Urine microalbumin   

Urine routine microscopy   

Electrocardiogram   

HbA1c   
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CGMS metrics 

 Baseline Follow up (4/8/12 

weeks) 
Average glucose   

Fasting glucose   

Nocturnal glucose   

Post prandial glucose   

Peak glucose   

%time in range   

% time in hyperglycemia   

%time in hypoglycemia   

Standard deviation   

% coefficient of variation   

Others   
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Event log sheet 

 

   
 

Time/ 
समय 

 

Meals /  

भोजन 

Blood glucose/  

ग्लूकोज 

Insulin/  

इंसुणिन 

 

Exercise/ 

व्यायाम 
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Annexure 5 

Abstract presented in ESICON 2021 
 

Continuous glucose monitoring in type 2 diabetes mellitus to assess 

glycemic control and glycemic variability 

 

Abstract 

Background 

Continuous glucose monitoring(CGM) can provide information beyond HbA1c and 

SMBG for glycemic control.  

Objectives 

To assess glycemic variability(GV) and correlation of CGM metrics with HbA1c in 

type 2 diabetic(T2DM) individuals. 

Results 

We enrolled 54 T2DM patients (age 537.8years) on prior 3-month stable anti-diabetic 

medications for atleast 48-hours CGM (IPRO®2 Professional) with satisfactory 

agreement with glucometer cross-calibration. With 892.4192.1 CGM readings, there 

was good correlation between CGM parameters and HbA1c (meanSD- 9.452.57%) 

using Spearman’s rho(ρ) analysis. There was positive correlation with HbA1c of 

glucose management indicator(GMI) (ρ=0.777, p<0.001), time-above-range(TAR) 

(ρ=0.739, p<0.001), area under curve(AUC) above limit(ρ=0.707, p<0.001), and 

negative correlation of Time-in-range(TIR)(ρ=-0.716, p<0.001). Looking into GV, 

there was no significant correlation of coefficient-of-variation(CV%) (ρ=-0.265, 

p=0.055) and weak positive correlation of standard deviation(SD)(ρ=0.274,  p= 0.043) 

with HbA1c. More importantly, Time-below-range(TBR)≥ 4% was seen in 

8(14.8%)patients, thus detecting unidentified asymptomatic hypoglycemias in 

6(11.1%) patients. 

 



140 
 

Conclusions 

Most CGM metrics correlated well with HbA1c, with additional advantage of 

identifying glycemic variability and asymptomatic hypoglycemias, These can be 

missed by infrequent home SMBG and HbA1c, and using CGM metrics can help tailor 

therapy to achieve a more optimal glycemic control, even in patients with relatively 

well-controlled HbA1c. 
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